The variance upper bound for a mixed random variable

Egozcue, Martín - Fuentes García, Luis

Resumen:

In this note, we derive upper bounds on the variance of a mixed random variable. Our results are an extension of previous results for unimodal and symmetric random variables. The novelty of our findings is that this mixed random variable does not necessary need to be symmetric and is multimodal. We also characterize the cases when these bounds are optimal.


Detalles Bibliográficos
2017
Gruss’ inequality
Popoviciu’s inequality
Unimodal
Symmetry
Inglés
Universidad de Montevideo
REDUM
https://hdl.handle.net/20.500.12806/1359
Acceso abierto
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
_version_ 1807356682130423808
author Egozcue, Martín
author2 Fuentes García, Luis
author2_role author
author_facet Egozcue, Martín
Fuentes García, Luis
author_role author
bitstream.checksum.fl_str_mv d01b514d0a4883994e0adfa602b898e6
4460e5956bc1d1639be9ae6146a50347
691ed290c8bf8671811a9242b7fc04b6
1e5e60e48b669fdb574002a8ff605681
df8adb468cb950b33eba138cd5518748
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://redum.um.edu.uy/bitstream/20.500.12806/1359/1/The_variance_upper_bound_for_a_mixed_random_variable.pdf
http://redum.um.edu.uy/bitstream/20.500.12806/1359/2/license_rdf
http://redum.um.edu.uy/bitstream/20.500.12806/1359/3/license.txt
http://redum.um.edu.uy/bitstream/20.500.12806/1359/4/The_variance_upper_bound_for_a_mixed_random_variable.pdf.txt
http://redum.um.edu.uy/bitstream/20.500.12806/1359/5/The_variance_upper_bound_for_a_mixed_random_variable.pdf.jpg
collection REDUM
dc.contributor.filiacion.es.fl_str_mv Egozcue, Martín. Universidad de Montevideo, Uruguay
Fuentes García, Luis. Universidad de Coruña, España
dc.creator.none.fl_str_mv Egozcue, Martín
Fuentes García, Luis
dc.date.accessioned.none.fl_str_mv 2022-07-04T19:29:57Z
dc.date.available.none.fl_str_mv 2022-07-04T19:29:57Z
dc.date.issued.es.fl_str_mv 2017
dc.description.abstract.none.fl_txt_mv In this note, we derive upper bounds on the variance of a mixed random variable. Our results are an extension of previous results for unimodal and symmetric random variables. The novelty of our findings is that this mixed random variable does not necessary need to be symmetric and is multimodal. We also characterize the cases when these bounds are optimal.
dc.format.extent.es.fl_str_mv 9 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12806/1359
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv Universidad de Montevideo, Facultad de Ciencias Empresariales y Economía, Departamento de Economía
dc.relation.ispartof.es.fl_str_mv Documentos de trabajo del Departamento de Economía
dc.rights.es.fl_str_mv Abierto
dc.rights.license.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source.none.fl_str_mv reponame:REDUM
instname:Universidad de Montevideo
instacron:Universidad de Montevideo
dc.subject.es.fl_str_mv Gruss’ inequality
Popoviciu’s inequality
Unimodal
Symmetry
dc.title.none.fl_str_mv The variance upper bound for a mixed random variable
dc.type.es.fl_str_mv Documento de trabajo
dc.type.none.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.es.fl_str_mv Publicada
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description In this note, we derive upper bounds on the variance of a mixed random variable. Our results are an extension of previous results for unimodal and symmetric random variables. The novelty of our findings is that this mixed random variable does not necessary need to be symmetric and is multimodal. We also characterize the cases when these bounds are optimal.
eu_rights_str_mv openAccess
format workingPaper
id REDUM_c673be5bc07354d83c60f737ca30ecb1
instacron_str Universidad de Montevideo
institution Universidad de Montevideo
instname_str Universidad de Montevideo
language eng
network_acronym_str REDUM
network_name_str REDUM
oai_identifier_str oai:redum.um.edu.uy:20.500.12806/1359
publishDate 2017
reponame_str REDUM
repository.mail.fl_str_mv nolascoaga@um.edu.uy
repository.name.fl_str_mv REDUM - Universidad de Montevideo
repository_id_str 10501
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
spelling Attribution-NonCommercial-NoDerivatives 4.0 InternacionalAbiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccess6749b2f7-2793-4ef0-b00f-52ae933b20f061841357-6480-40d4-9466-ef28cee2c0e5Egozcue, Martín. Universidad de Montevideo, UruguayFuentes García, Luis. Universidad de Coruña, España2022-07-04T19:29:57Z2022-07-04T19:29:57Z2017https://hdl.handle.net/20.500.12806/1359In this note, we derive upper bounds on the variance of a mixed random variable. Our results are an extension of previous results for unimodal and symmetric random variables. The novelty of our findings is that this mixed random variable does not necessary need to be symmetric and is multimodal. We also characterize the cases when these bounds are optimal.9 p.application/pdfengUniversidad de Montevideo, Facultad de Ciencias Empresariales y Economía, Departamento de EconomíaDocumentos de trabajo del Departamento de EconomíaGruss’ inequalityPopoviciu’s inequalityUnimodalSymmetryThe variance upper bound for a mixed random variableDocumento de trabajoPublicadainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/workingPaperreponame:REDUMinstname:Universidad de Montevideoinstacron:Universidad de MontevideoEgozcue, MartínFuentes García, LuisORIGINALThe_variance_upper_bound_for_a_mixed_random_variable.pdfThe_variance_upper_bound_for_a_mixed_random_variable.pdfapplication/pdf702680http://redum.um.edu.uy/bitstream/20.500.12806/1359/1/The_variance_upper_bound_for_a_mixed_random_variable.pdfd01b514d0a4883994e0adfa602b898e6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://redum.um.edu.uy/bitstream/20.500.12806/1359/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82117http://redum.um.edu.uy/bitstream/20.500.12806/1359/3/license.txt691ed290c8bf8671811a9242b7fc04b6MD53TEXTThe_variance_upper_bound_for_a_mixed_random_variable.pdf.txtThe_variance_upper_bound_for_a_mixed_random_variable.pdf.txtExtracted texttext/plain11525http://redum.um.edu.uy/bitstream/20.500.12806/1359/4/The_variance_upper_bound_for_a_mixed_random_variable.pdf.txt1e5e60e48b669fdb574002a8ff605681MD54THUMBNAILThe_variance_upper_bound_for_a_mixed_random_variable.pdf.jpgThe_variance_upper_bound_for_a_mixed_random_variable.pdf.jpgGenerated Thumbnailimage/jpeg1532http://redum.um.edu.uy/bitstream/20.500.12806/1359/5/The_variance_upper_bound_for_a_mixed_random_variable.pdf.jpgdf8adb468cb950b33eba138cd5518748MD5520.500.12806/13592024-06-04 03:00:19.678oai:redum.um.edu.uy:20.500.12806/1359TGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEgCkF1dG9yaXphY2nDs24gcGFyYSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBVbml2ZXJzaWRhZCBkZSBNb250ZXZpZGVvIChSRURVTSkKClBhcmEgcXVlIGVsIFJFRFVNIGFsbWFjZW5lLCByZXByb2R1emNhIHkgZGlmdW5kYSBww7pibGljYW1lbnRlIGxhIG9icmEgcXVlIHNlIGRlcG9zaXRhLCBlcyBuZWNlc2FyaW8gcXVlIGFjZXB0ZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoxLglBdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIE1vbnRldmlkZW8gZWwgZGVyZWNobyBubyBleGNsdXNpdm8gZGUgYWxtYWNlbmFyLCByZXByb2R1Y2lyLCBjb211bmljYXIgeS9vIGRpc3RyaWJ1aXIgZ3JhdHVpdGEgeSBww7pibGljYW1lbnRlIGVzdGEgb2JyYSBiYWpvIGZvcm1hdG8gZWxlY3Ryw7NuaWNvIGVuIGVsIFJFRFVNLiAKMi4JRXN0b3kgZGUgYWN1ZXJkbyBlbiBxdWUgbGEgVW5pdmVyc2lkYWQgZGUgTW9udGV2aWRlbyBwdWVkYSBjb25zZXJ2YXIgbcOhcyBkZSB1bmEgY29waWEgZGUgZXN0YSBvYnJhIHksIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkbywgY29udmVydGlybG8gYSBjdWFscXVpZXIgZm9ybWF0byBkZSBhcmNoaXZvLCBtZWRpbyBvIHNvcG9ydGUsIHBhcmEgcHJvcMOzc2l0b3MgZGUgc2VndXJpZGFkLCBwcmVzZXJ2YWNpw7NuIHkgYWNjZXNvLiAKMy4JQXV0b3Jpem8gbGEgcmVwcm9kdWNjacOzbiB0b3RhbCBvIHBhcmNpYWwgZGUgbGEgb2JyYSwgc2llbXByZSBhc29jaWFkYSBhIG1pIG5vbWJyZSBlbiBjYWxpZGFkIGRlIGF1dG9yLgo0LglFbiBuaW5ndW5hIGNpcmN1bnN0YW5jaWEgYXV0b3Jpem8gbGEgYWRhcHRhY2nDs24sIHRyYW5zZm9ybWFjacOzbiwgdHJhZHVjY2nDs24geSBlbiBnZW5lcmFsIGN1YWxxdWllciB0aXBvIGRlIG1vZGlmaWNhY2nDs24gYSBtaSBvYnJhLgo1LglEZWNsYXJvIHF1ZSBlc3RhIG9icmEgZXMgdW4gdHJhYmFqbyBvcmlnaW5hbCB5IHF1ZSBzb3kgYXV0b3IgZGUgbGEgbWlzbWEgeSBxdWUgbm8gaGUgb3RvcmdhZG8gZXNvcyBkZXJlY2hvcyBhIHRlcmNlcm9zIHF1ZSBwdWVkYW4gbGltaXRhciBhIGxhIFVNIHBhcmEgZWplcmNlcmxvcy4gCjYuCUVuIGVsIGNhc28gZGUgcXVlIGVzdGEgb2JyYSBjb250ZW5nYSBtYXRlcmlhbCBwYXJhIGVsIHF1ZSBubyBwb3NlbyBkZXJlY2hvcyBkZSBhdXRvciwgZGVjbGFybyBxdWUgaGUgb2J0ZW5pZG8gZWwgcGVybWlzbyBzaW4gcmVzdHJpY2Npb25lcyBkZWwKcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIGxhIFVuaXZlcnNpZGFkIGRlIE1vbnRldmlkZW8gbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGRpY2hvIG1hdGVyaWFsIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGVsIHRleHRvIG8gY29udGVuaWRvIGRlIGxhIHByZXNlbnRhY2nDs24uIAo3LglEZWNsYXJvIHF1ZSBsYSBVbml2ZXJzaWRhZCBkZSBNb250ZXZpZGVvIHF1ZWRhIGV4Y2x1aWRhIGRlIHRvZGEgcmVzcG9uc2FiaWxpZGFkIGVuIGNhc28gZGUgZXZlbnR1YWxlcyByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zIHBvciBpbmZyaW5naXIgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLiAKOC4JRGVjbGFybyBxdWUgbGFzIG9waW5pb25lcyBleHByZXNhZGFzIGVuIGVzdGUgZG9jdW1lbnRvIG5vIHNvbiBuZWNlc2FyaWFtZW50ZSBjb21wYXJ0aWRhcyBwb3IgbGEgVW5pdmVyc2lkYWQgZGUgTW9udGV2aWRlby4gCjkuCUF1dG9yaXpvIGEgbG9zIHVzdWFyaW9zIGRlbCBSRURVTSBwYXJhIHV0aWxpemFyLCByZXByb2R1Y2lyIHkgZGlzdHJpYnVpciBlc3RlIGRvY3VtZW50byBiYWpvIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgNC4wLiAoQXRyaWJ1Y2nDs24tTm9Db21lcmNpYWwtU2luRGVyaXZhZGFzIDQuMCBJbnRlcm5hY2lvbmFsKS4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyB0w6lybWlub3MgZGUgZXN0YSBhdXRvcml6YWNpw7NuLCBwb3IgZmF2b3IgZW52w61lbGEgYSBiaWJsaW90ZWNhQHVtLmVkdS51eQoKCgo=Universidadhttps://um.edu.uy/https://redum.um.edu.uy/oai/requestnolascoaga@um.edu.uyUruguayopendoar:105012024-06-04T06:00:19REDUM - Universidad de Montevideofalse
spellingShingle The variance upper bound for a mixed random variable
Egozcue, Martín
Gruss’ inequality
Popoviciu’s inequality
Unimodal
Symmetry
status_str publishedVersion
title The variance upper bound for a mixed random variable
title_full The variance upper bound for a mixed random variable
title_fullStr The variance upper bound for a mixed random variable
title_full_unstemmed The variance upper bound for a mixed random variable
title_short The variance upper bound for a mixed random variable
title_sort The variance upper bound for a mixed random variable
topic Gruss’ inequality
Popoviciu’s inequality
Unimodal
Symmetry
url https://hdl.handle.net/20.500.12806/1359