Continuity and completeness under risk
Resumen:
Suppose some non-degenerate preferences R, with strict part P, over risky outcomes satisfy Independence. Then, when they satisfy any two of the following axioms, they satisfy the third. Herstein-Milnor: for all lotteries p,q,r, the set of a's for which ap+(1-a)qRr is closed. Archimedean: for all p,q,r there exists a>0 such that if pPq, then ap+(1-a)rPq. Complete: for all p,q, either pRq or qRp.
2010 | |
Economía | |
Inglés | |
Universidad de Montevideo | |
REDUM | |
https://hdl.handle.net/20.500.12806/1301 | |
Acceso abierto | |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
Resultados similares
-
Risk aversion at the country level
Autor(es):: Gandelman, Néstor
Fecha de publicación:: (2014) -
On Uniqueness of Equilibrium for Complete Markets with Infinitely Many Goods and in Finance Models
Autor(es):: Accinelli Gamba, Elvio
Fecha de publicación:: (1998) -
Peer effects in risk aversion
Autor(es):: Balsa, Ana I.
Fecha de publicación:: (2012) -
What do happiness and health satisfaction data tell us about relative risk aversion?
Autor(es):: Gandelman, Néstor
Fecha de publicación:: (2012) -
Collusive networks in market-sharing agreements under the prsesence of an antitrust authority
Autor(es):: Roldán, Flavia
Fecha de publicación:: (2012)