Continuity and completeness under risk
Resumen:
Suppose some non-degenerate preferences R, with strict part P, over risky outcomes satisfy Independence. Then, when they satisfy any two of the following axioms, they satisfy the third. Herstein-Milnor: for all lotteries p,q,r, the set of a's for which ap+(1-a)qRr is closed. Archimedean: for all p,q,r there exists a>0 such that if pPq, then ap+(1-a)rPq. Complete: for all p,q, either pRq or qRp.
2010 | |
Economía | |
Inglés | |
Universidad de Montevideo | |
REDUM | |
https://hdl.handle.net/20.500.12806/1301 | |
Acceso abierto | |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |