Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.

Seiler Collazo, Santiago Leonel

Supervisor(es): Klein, Bern

Resumen:

Sensor-based sorting is perceived as a feasible solution for some of the most critical aspects of mineral processing. There are two basic classes of sensors, 1. those that measure a property characteristic of the bulk of a particle; and 2. those that measure a property of the surface of a particle. For the second class, the surface measurement is then correlated to the bulk property of interest. The correlation does not only depend on how well the sensors can analyze the surface, but also on how well the surface correlates to the volume of the rock. The correlation is even more complex since only part of the rock surface is scanned by an actual sorter. Thus, the heterogeneity within each particle, defined as intraparticle heterogeneity, is an important variable to be characterized. The main objective of this work was to design and develop a method for rock surface mapping to assess intraparticle heterogeneity and to evaluate the correlation between surface grade and bulk grade for run of the mine or primary crushed rocks. The XRF mapping technique developed, and the procedure selected to analyze the mapping data, were described and applied to two porphyry copper ore samples. According to an univariate statistical analysis, for the samples analyzed, copper and iron data distributions did not follow either normal or lognormal distribution. Median and median absolute deviation were proposed as the best parameters to summarize the surface grade and the intraparticle heterogeneity, respectively. The median value of the surface grade data showed the best correlation to the bulk grade of the rock for both elements. For the copper ore used in this work, with mainly vein type mineralization, the one-dimensional heterogeneity assessment showed a high degree of intraparticle heterogeneity. This characteristic of the ore might generate poor reproducibility in the results of an XRF sorter when sensing only one face of each rock. The variogram was evaluated as a measure of heterogeneity in two dimensions. Two-color mapping method was selected to display the data collected in the XRF mapping for both samples analyzed.


Detalles Bibliográficos
2018
Agencia Nacional de Investigación e Innovación
Ingeniería de Minas
Procesamiento de Minerales
Sensor-based sorting
Otras Ingenierías y Tecnologías
Ingeniería de Minas
Inglés
Agencia Nacional de Investigación e Innovación
REDI
http://hdl.handle.net/20.500.12381/163
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
_version_ 1814959255353032704
author Seiler Collazo, Santiago Leonel
author_facet Seiler Collazo, Santiago Leonel
author_role author
bitstream.checksum.fl_str_mv 2d97768b1a25a7df5a347bb58fd2d77f
2e646daba068f0963e807ebf638d292f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/163/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/163/1/POS_IDRC_2015_1_106261.pdf
collection REDI
dc.creator.advisor.none.fl_str_mv Klein, Bern
dc.creator.none.fl_str_mv Seiler Collazo, Santiago Leonel
dc.date.accessioned.none.fl_str_mv 2019-10-23T12:09:27Z
dc.date.available.none.fl_str_mv 2019-10-23T12:09:27Z
dc.date.issued.none.fl_str_mv 2018
dc.description.abstract.none.fl_txt_mv Sensor-based sorting is perceived as a feasible solution for some of the most critical aspects of mineral processing. There are two basic classes of sensors, 1. those that measure a property characteristic of the bulk of a particle; and 2. those that measure a property of the surface of a particle. For the second class, the surface measurement is then correlated to the bulk property of interest. The correlation does not only depend on how well the sensors can analyze the surface, but also on how well the surface correlates to the volume of the rock. The correlation is even more complex since only part of the rock surface is scanned by an actual sorter. Thus, the heterogeneity within each particle, defined as intraparticle heterogeneity, is an important variable to be characterized. The main objective of this work was to design and develop a method for rock surface mapping to assess intraparticle heterogeneity and to evaluate the correlation between surface grade and bulk grade for run of the mine or primary crushed rocks. The XRF mapping technique developed, and the procedure selected to analyze the mapping data, were described and applied to two porphyry copper ore samples. According to an univariate statistical analysis, for the samples analyzed, copper and iron data distributions did not follow either normal or lognormal distribution. Median and median absolute deviation were proposed as the best parameters to summarize the surface grade and the intraparticle heterogeneity, respectively. The median value of the surface grade data showed the best correlation to the bulk grade of the rock for both elements. For the copper ore used in this work, with mainly vein type mineralization, the one-dimensional heterogeneity assessment showed a high degree of intraparticle heterogeneity. This characteristic of the ore might generate poor reproducibility in the results of an XRF sorter when sensing only one face of each rock. The variogram was evaluated as a measure of heterogeneity in two dimensions. Two-color mapping method was selected to display the data collected in the XRF mapping for both samples analyzed.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
dc.format.extent.es.fl_str_mv 113 p.
dc.identifier.anii.es.fl_str_mv POS_IDRC_2015_1_106261
dc.identifier.citation.es.fl_str_mv Seiler Collazo, Santiago Leonel (2018). Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation (tesis de maestría). Norman B. Keevil Institute of Mining Engineering
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12381/163
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv Norman B. Keevil Institute of Mining Engineering
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento 4.0 Internacional. (CC BY)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.es.fl_str_mv Otras Ingenierías y Tecnologías
Ingeniería de Minas
dc.subject.es.fl_str_mv Ingeniería de Minas
Procesamiento de Minerales
Sensor-based sorting
dc.title.none.fl_str_mv Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.es.fl_str_mv Aceptado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Sensor-based sorting is perceived as a feasible solution for some of the most critical aspects of mineral processing. There are two basic classes of sensors, 1. those that measure a property characteristic of the bulk of a particle; and 2. those that measure a property of the surface of a particle. For the second class, the surface measurement is then correlated to the bulk property of interest. The correlation does not only depend on how well the sensors can analyze the surface, but also on how well the surface correlates to the volume of the rock. The correlation is even more complex since only part of the rock surface is scanned by an actual sorter. Thus, the heterogeneity within each particle, defined as intraparticle heterogeneity, is an important variable to be characterized. The main objective of this work was to design and develop a method for rock surface mapping to assess intraparticle heterogeneity and to evaluate the correlation between surface grade and bulk grade for run of the mine or primary crushed rocks. The XRF mapping technique developed, and the procedure selected to analyze the mapping data, were described and applied to two porphyry copper ore samples. According to an univariate statistical analysis, for the samples analyzed, copper and iron data distributions did not follow either normal or lognormal distribution. Median and median absolute deviation were proposed as the best parameters to summarize the surface grade and the intraparticle heterogeneity, respectively. The median value of the surface grade data showed the best correlation to the bulk grade of the rock for both elements. For the copper ore used in this work, with mainly vein type mineralization, the one-dimensional heterogeneity assessment showed a high degree of intraparticle heterogeneity. This characteristic of the ore might generate poor reproducibility in the results of an XRF sorter when sensing only one face of each rock. The variogram was evaluated as a measure of heterogeneity in two dimensions. Two-color mapping method was selected to display the data collected in the XRF mapping for both samples analyzed.
eu_rights_str_mv openAccess
format masterThesis
id REDI_d58fc085a14e7a5a7b9508881fb6c24e
identifier_str_mv Seiler Collazo, Santiago Leonel (2018). Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation (tesis de maestría). Norman B. Keevil Institute of Mining Engineering
POS_IDRC_2015_1_106261
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language eng
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/163
publishDate 2018
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento 4.0 Internacional. (CC BY)
Acceso abierto
spelling Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2019-10-23T12:09:27Z2019-10-23T12:09:27Z2018Seiler Collazo, Santiago Leonel (2018). Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation (tesis de maestría). Norman B. Keevil Institute of Mining Engineeringhttp://hdl.handle.net/20.500.12381/163POS_IDRC_2015_1_106261Sensor-based sorting is perceived as a feasible solution for some of the most critical aspects of mineral processing. There are two basic classes of sensors, 1. those that measure a property characteristic of the bulk of a particle; and 2. those that measure a property of the surface of a particle. For the second class, the surface measurement is then correlated to the bulk property of interest. The correlation does not only depend on how well the sensors can analyze the surface, but also on how well the surface correlates to the volume of the rock. The correlation is even more complex since only part of the rock surface is scanned by an actual sorter. Thus, the heterogeneity within each particle, defined as intraparticle heterogeneity, is an important variable to be characterized. The main objective of this work was to design and develop a method for rock surface mapping to assess intraparticle heterogeneity and to evaluate the correlation between surface grade and bulk grade for run of the mine or primary crushed rocks. The XRF mapping technique developed, and the procedure selected to analyze the mapping data, were described and applied to two porphyry copper ore samples. According to an univariate statistical analysis, for the samples analyzed, copper and iron data distributions did not follow either normal or lognormal distribution. Median and median absolute deviation were proposed as the best parameters to summarize the surface grade and the intraparticle heterogeneity, respectively. The median value of the surface grade data showed the best correlation to the bulk grade of the rock for both elements. For the copper ore used in this work, with mainly vein type mineralization, the one-dimensional heterogeneity assessment showed a high degree of intraparticle heterogeneity. This characteristic of the ore might generate poor reproducibility in the results of an XRF sorter when sensing only one face of each rock. The variogram was evaluated as a measure of heterogeneity in two dimensions. Two-color mapping method was selected to display the data collected in the XRF mapping for both samples analyzed.Agencia Nacional de Investigación e Innovación113 p.engNorman B. Keevil Institute of Mining EngineeringIngeniería de MinasProcesamiento de MineralesSensor-based sortingOtras Ingenierías y TecnologíasIngeniería de MinasSurface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.Tesis de maestríaAceptadoinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/masterThesisreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónSeiler Collazo, Santiago LeonelKlein, BernLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/163/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALPOS_IDRC_2015_1_106261.pdfapplication/pdf4735177https://redi.anii.org.uy/jspui/bitstream/20.500.12381/163/1/POS_IDRC_2015_1_106261.pdf2e646daba068f0963e807ebf638d292fMD5120.500.12381/1632020-09-18 11:53:25.686oai:redi.anii.org.uy:20.500.12381/163PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212020-09-18T14:53:25REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.
Seiler Collazo, Santiago Leonel
Ingeniería de Minas
Procesamiento de Minerales
Sensor-based sorting
Otras Ingenierías y Tecnologías
Ingeniería de Minas
status_str acceptedVersion
title Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.
title_full Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.
title_fullStr Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.
title_full_unstemmed Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.
title_short Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.
title_sort Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.
topic Ingeniería de Minas
Procesamiento de Minerales
Sensor-based sorting
Otras Ingenierías y Tecnologías
Ingeniería de Minas
url http://hdl.handle.net/20.500.12381/163