Surface XRF mapping for intraparticle heterogeneity assessment and particle grade estimation.
Supervisor(es): Klein, Bern
Resumen:
Sensor-based sorting is perceived as a feasible solution for some of the most critical aspects of mineral processing. There are two basic classes of sensors, 1. those that measure a property characteristic of the bulk of a particle; and 2. those that measure a property of the surface of a particle. For the second class, the surface measurement is then correlated to the bulk property of interest. The correlation does not only depend on how well the sensors can analyze the surface, but also on how well the surface correlates to the volume of the rock. The correlation is even more complex since only part of the rock surface is scanned by an actual sorter. Thus, the heterogeneity within each particle, defined as intraparticle heterogeneity, is an important variable to be characterized. The main objective of this work was to design and develop a method for rock surface mapping to assess intraparticle heterogeneity and to evaluate the correlation between surface grade and bulk grade for run of the mine or primary crushed rocks. The XRF mapping technique developed, and the procedure selected to analyze the mapping data, were described and applied to two porphyry copper ore samples. According to an univariate statistical analysis, for the samples analyzed, copper and iron data distributions did not follow either normal or lognormal distribution. Median and median absolute deviation were proposed as the best parameters to summarize the surface grade and the intraparticle heterogeneity, respectively. The median value of the surface grade data showed the best correlation to the bulk grade of the rock for both elements. For the copper ore used in this work, with mainly vein type mineralization, the one-dimensional heterogeneity assessment showed a high degree of intraparticle heterogeneity. This characteristic of the ore might generate poor reproducibility in the results of an XRF sorter when sensing only one face of each rock. The variogram was evaluated as a measure of heterogeneity in two dimensions. Two-color mapping method was selected to display the data collected in the XRF mapping for both samples analyzed.
2018 | |
Agencia Nacional de Investigación e Innovación | |
Ingeniería de Minas Procesamiento de Minerales Sensor-based sorting Otras Ingenierías y Tecnologías Ingeniería de Minas |
|
Inglés | |
Agencia Nacional de Investigación e Innovación | |
REDI | |
http://hdl.handle.net/20.500.12381/163 | |
Acceso abierto | |
Reconocimiento 4.0 Internacional. (CC BY) |