A Congruence-based Approach to Active Automata Learning from Neural Language Models

Mayr, Franz - Yovine, Sergio - Carrasco, Matías - Pan, Federico - Vilensky, Federico

Resumen:

The paper proposes an approach for probably approximately correct active learning of probabilistic automata (PDFA) from neural language models. It is based on a congruence over strings which is parameterized by an equivalence relation over probability distribu- tions. The learning algorithm is implemented using a tree data structure of arbitrary (possibly unbounded) degree. The implementation is evaluated with several equivalences on LSTM and Transformer-based neural language models from different application do- mains.


Detalles Bibliográficos
2023
Agencia Nacional de Investigación e Innovación
Artificial intelligence
Active learning
Neural language models
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Ciencias de la Computación
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/3419
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)