Towards Efficient Active Learning of PDFA

Mayr, F. - Yovine, S. - Pan, F. - Basset, N. - Dang, T.

Resumen:

We propose a new active learning algorithm for PDFA based on three main aspects: a congruence over states which takes into account next-symbol probability distributions, a quantization that copes with differences in distributions, and an efficient tree-based data structure. Experiments showed significant performance gains with respect to reference implementations.


Detalles Bibliográficos
2022
Agencia Nacional de Investigación e Innovación
Artificial Intelligencece
Active Learning
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Ciencias de la Computación
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/595
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
Resumen:
Sumario:We propose a new active learning algorithm for PDFA based on three main aspects: a congruence over states which takes into account next-symbol probability distributions, a quantization that copes with differences in distributions, and an efficient tree-based data structure. Experiments showed significant performance gains with respect to reference implementations.