Impact of changes in the syngas-biochar mix and plant size on the economics and environmental performance of distributed biomass gasification systems

Camarero Lema, Sofía Inés

Supervisor(es): Alfaro, Jose - Vaishnav, Parth

Resumen:

Agriculture and forestry residues are potential sources of sustainable energy that do not compete with food or demand land use changes. Small-scale biomass gasification could be used to generate decentralized renewable electricity where these biomass stocks are locally available, while co-producing biochar to sequester carbon. This study evaluated how the scale and the syngas-biochar trade-offs impact the economics and decarbonization potential of a gasification system. A small-scale downdraft gasifier fed with logging residues in Michigan was used as case study. A Life Cycle Assessment (LCA) approach was used to formulate Economic Benefit (EB) and Carbon Abatement (CA) objective functions that formed a Multi Criteria Decision Analysis (MCDA) problem. Feasible product mix and scale configurations were mapped, and a pareto frontier was identified. EB is maximized when the electricity generation and the scale are maximized, at expense of emitting 1.683 kg CO2eq/kWh. Conversely, CA is maximized to 0.348 kg CO2eq abated per kWh for the highest biochar production and the smallest scale. Results were found to be sensitive to external factors: EB optimum shifted to maximize biochar when the carbon price was increased from 5 $/ton CO2eq to match the social cost of carbon (50 $/ton CO2eq) and 2030 projections (100 $/ton CO2eq), CA increased 112.0% when grid electricity emissions were increased from 0.48 kg CO2eq/kWh (Michigan’s) to 0.87 kg CO2eq/kWh (West Virignia’s), and EB reached 0.147 $/kWh when a high electricity price of 33 ¢/kWh (Hawaii’s) is considered instead of Michigan’s 13 ¢/kWh. For different stakeholders and contexts, the maximization of positive impacts can require different technology configurations. The developed LCA-MCDA combined methodology provides an example of a framework that could inform decision-making in the deployment of biomass gasification to reconcile economic and climate change mitigation objectives.


Detalles Bibliográficos
2022
Agencia Nacional de Investigación e Innovación
Comisión Fulbright Uruguay
Biomass gasification
Life cycle assessment
Decarbonization
Biochar
Bioenergy
Ingeniería y Tecnología
Ingeniería del Medio Ambiente
Ingeniería Química
Ciencias Naturales y Exactas
Ciencias de la Tierra y relacionadas con el Medio Ambiente
Ciencias Medioambientales
Ingeniería del Petróleo, Energía y Combustibles
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/640
Acceso abierto
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)