The whole and the parts : The MDL principle and the a-contrario framework

Grompone von Gioi, Rafael - Ramírez Paulino, Ignacio - Randall, Gregory

Resumen:

This work explores the connections between the Minimum Description Length (MDL) principle as developed by Rissanen, and the a-contrario framework for structure detection proposed by Desolneux, Moisan and Morel. The MDL principle focuses on the best interpretation for the whole data while the a-contrario approach concentrates on detecting parts of the data with anomalous statistics. Although framed in different theoretical formalisms, we show that both methodologies share many common concepts and tools in their machinery and yield very similar formulations in a number of interesting scenarios ranging from simple toy examples to practical applications such as polygonal approximation of curves and line segment detection in images. We also formulate the conditions under which both approaches are formally equivalent.


Detalles Bibliográficos
2021
Model selection
Structure detection
MDL
A-contrario framework
Non accidentalness principle
NFA
Polygonal approximation
Line segment detection
Inglés
Universidad de la República
COLIBRI
https://arxiv.org/abs/2112.06853
https://hdl.handle.net/20.500.12008/30466
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)