Statistical Deep parsing for spanish

Chiruzzo, Luis

Supervisor(es): Wonsever, Dina

Resumen:

This document presents the development of a statistical HPSG parser for Spanish. HPSG is a deep linguistic formalism that combines syntactic and semanticinformation in the same representation, and is capable of elegantly modelingmany linguistic phenomena. Our research consists in the following steps: design of the HPSG grammar, construction of the corpus, implementation of theparsing algorithms, and evaluation of the parsers performance. We created a simple yet powerful HPSG grammar for Spanish that modelsmorphosyntactic information of words, syntactic combinatorial valence, and semantic argument structures in its lexical entries. The grammar uses thirteenvery broad rules for attaching specifiers, complements, modifiers, clitics, relative clauses and punctuation symbols, and for modeling coordinations. In asimplification from standard HPSG, the only type of long range dependency wemodel is the relative clause that modifies a noun phrase, and we use semanticrole labeling as our semantic representation. We transformed the Spanish AnCora corpus using a semi-automatic processand analyzed it using our grammar implementation, creating a Spanish HPSGcorpus of 517,237 words in 17,328 sentences (all of AnCora). We implemented several statistical parsing algorithms and trained them overthis corpus. The implemented strategies are: a bottom-up baseline using bi-lexical comparisons or a multilayer perceptron; a CKY approach that uses theresults of a supertagger; and a top-down approach that encodes word sequencesusing a LSTM network. We evaluated the performance of the implemented parsers and compared them with each other and against other existing Spanish parsers. Our LSTM top-down approach seems to be the best performing parser over our test data, obtaining the highest scores (compared to our strategies and also to externalparsers) according to constituency metrics (87.57 unlabeled F1, 82.06 labeled F1), dependency metrics (91.32 UAS, 88.96 LAS), and SRL (87.68 unlabeled,80.66 labeled), but we must take in consideration that the comparison against the external parsers might be noisy due to the post-processing we needed to do in order to adapt them to our format. We also defined a set of metrics to evaluate the identification of some particular language phenomena, and the LSTM top-down parser out performed the baselines in almost all of these metrics as well.


Este documento presenta el desarrollo de un parser HPSG estadístico para el español. HPSG es un formalismo lingüístico profundo que combina información sintáctica y semántica en sus representaciones, y es capaz de modelar elegantemente una buena cantidad de fenómenos lingüísticos. Nuestra investigación se compone de los siguiente pasos: diseño de la gramática HPSG, construcción del corpus, implementación de los algoritmos de parsing y evaluación de la performance de los parsers. Diseñamos una gramática HPSG para el español simple y a la vez poderosa, que modela en sus entradas léxicas la información morfosintáctica de las palabras, la valencia combinatoria sintáctica y la estructura argumental semántica. La gramática utiliza trece reglas genéricas para adjuntar especificadores, complementos, clíticos, cláusulas relativas y símbolos de puntuación, y también para modelar coordinaciones. Como simplificación de la teoría HPSG estándar, el único tipo de dependencia de largo alcance que modelamos son las cláusulas relativas que modifican sintagmas nominales, y utilizamos etiquetado de roles semánticos como representación semántica. Transformamos el corpus AnCora en español utilizando un proceso semiautomático y lo analizamos mediante nuestra implementación de la gramática, para crear un corpus HPSG en español de 517,237 palabras en 17,328 oraciones (todo el contenido de AnCora). Implementamos varios algoritmos de parsing estadístico entrenados sobre este corpus. En particular, teníamos como objetivo probar enfoques basados en redes neuronales. Las estrategias implementadas son: una línea base bottom-up que utiliza comparaciones bi-léxicas o un perceptrón multicapa; un enfoque tipo CKY que utiliza los resultados de un supertagger; y un enfoque top-down que codifica las secuencias de palabras mediante redes tipo LSTM. Evaluamos la performance de los parsers implementados y los comparamos entre sí y con un conjunto de parsers existententes para el español. Nuestro enfoque LSTM top-down parece ser el que tiene mejor desempeño para nuestro conjunto de test, obteniendo los mejores puntajes (comparado con nuestras estrategias y también con parsers externos) en cuanto a métricas de constituyentes (87.57 F1 no etiquetada, 82.06 F1 etiquetada), métricas de dependencias (91.32 UAS, 88.96 LAS), y SRL (87.68 no etiquetada, 80.66 etiquetada), pero debemos tener en cuenta que la comparación con parsers externos puede ser ruidosa debido al post procesamiento realizado para adaptarlos a nuestro formato. También definimos un conjunto de métricas para evaluar la identificación de algunos fenómenos particulares del lenguaje, y el parser LSTM top-down obtuvo mejores resultados que las baselines para casi todas estas métricas.


Detalles Bibliográficos
2020
Parsing
HPSG
Spanish
Neural networks
Deep parsing
NLP
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/26672
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)