Non-parametric sub-pixel local point spread function estimation
Resumen:
This work presents an algorithm for the local subpixel estimation of the Point Spread Function (PSF) that models the intrinsic camera blur. For this purpose, the Bernoulli(0:5) random noise calibration pattern introduced in a previous article [1] is used. This leads to a well-posed near-optimal accurate estimation. First the pattern position and its illumination conditions are accurately estimated. This allows for accurate geometric registration and radiometric correction. Once these procedures are performed, the local PSF can be directly computed by inverting a linear system. This system is well-posed and consequently its inversion does not require any regularization or prior model. The PSF estimates reach stringent accuracy levels with a relative error in the order of 2 to 5%.
2012 | |
Procesamiento de Señales | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41147
https://doi.org/10.5201/ipol.2012.admm-nppsf |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
The non- parametric sub-pixel local point spread function estimation is a well posed problem
Autor(es):: Delbracio, Mauricio
Fecha de publicación:: (2012) -
Subpixel point spread function estimation from two photographs at different distances
Autor(es):: Almansa, Andrés
Fecha de publicación:: (2012) -
Blind subpixel point spread function estimation from scaled image pairs
Autor(es):: Delbracio, Mauricio
Fecha de publicación:: (2012) -
Pitch tracking in polyphonic audio by clustering local fundamental frequency estimates
Autor(es):: Rocamora, Martín
Fecha de publicación:: (2011) -
An unsupervised point alignment detection algorithm
Autor(es):: Lezama, José
Fecha de publicación:: (2015)