Non-parametric sub-pixel local point spread function estimation

Almansa, Andrés - Musé, Pablo - Delbracio, Mauricio

Resumen:

This work presents an algorithm for the local subpixel estimation of the Point Spread Function (PSF) that models the intrinsic camera blur. For this purpose, the Bernoulli(0:5) random noise calibration pattern introduced in a previous article [1] is used. This leads to a well-posed near-optimal accurate estimation. First the pattern position and its illumination conditions are accurately estimated. This allows for accurate geometric registration and radiometric correction. Once these procedures are performed, the local PSF can be directly computed by inverting a linear system. This system is well-posed and consequently its inversion does not require any regularization or prior model. The PSF estimates reach stringent accuracy levels with a relative error in the order of 2 to 5%.


Detalles Bibliográficos
2012
Procesamiento de Señales
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/41147
https://doi.org/10.5201/ipol.2012.admm-nppsf
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)