Respiratory rate estimation on embedded system

Morales, Isabel - Martínez Hornak, Leonardo - Solari, Alfredo - Oreggioni, Julián

Resumen:

We present the design, implementation, and results of an algorithm for respiratory rate estimation using respiratory-induced frequency, intensity, and amplitude variation calculated from the infrared (IR) channel of the SEN-15219 board for photoplethysmography (PPG) acquisition. First, the algorithm was developed in Python (on a PC) using synthetic signals and publicly available respiration and PPG data. We also include a graphical user interface to process data from sensors and display vital signs. Later, we ported the algorithm to an MSP432P401R microcontroller to complete our wearable prototype. Results are promissory and show that respiratory rate estimation can be performed on the selected platform with our proposed Fourier Product (FP) method, which results in a Mean Absolute Error of 4.1 using 16-seconds windows of IR-PPG signals.


Detalles Bibliográficos
2023
Este trabajo fue parcialmente financiado por CSIC, Universidad de la República, Uruguay
Estimation
Microcontrollers
Signal processing algorithms
Embedded systems
Biomedical monitoring
Performance evaluation
Graphical user interfaces
Respiratory rate estimation
Photoplethysmography
Signal processing
Low-power embedded system
Inglés
Universidad de la República
COLIBRI
https://ieeexplore.ieee.org/document/10133829
https://hdl.handle.net/20.500.12008/41009
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)