Illustrating a neural model of logic computations: the case of Sherlock Holmes' old maxim
Resumen:
Natural languages can express some logical propositions that humans are able to understand. We illustrate this fact with a famous text that Conan Doyle attributed to Holmes: "It is an old maxim of mine that when you have excluded the impossible, whatever remains, however improbable, must be the truth". This is a subtle logical statement usually felt as an evident truth. The problem we are trying to solve is the cognitive reason for such a feeling. We postulate here that we accept Holmes' maxim as true because our adult brains are equipped with neural modules that naturally perform modal logical computations.
Los lenguajes naturales pueden expresar algunas proposiciones lógicas que los humanos pueden entender. Ilustramos esto con un famoso texto que Conan Doyle atribuye a Holmes: "Una vieja máxima mía dice que cuando has eliminado lo imposible, lo que queda, por muy improbable que parezca, tiene que ser la verdad”. Esto es una sutil declaración lógica que usualmente se siente evidentemente verdadera. El problema que tratamos de resolver es la razón cognitiva de tal sentimiento. Postulamos que aceptamos la máxima de Holmes como verdadera porque nuestros cerebros adultos están equipados con módulos neurales que ejecutan naturalmente cómputos de la lógica modal.
2016 | |
Modal logics Models of reasoning Natural language Neural computations Computaciones neurales Lenguaje natural Modelos de razonamiento Lógicas modales |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/25829 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |