Nox2-derived superoxide radical is crucial to control acute Trypanosoma cruzi infection

Prolo, Carolina - Estrada, Damián - Piacenza, Lucía - Benítez, Diego - Comini, Marcelo A. - Radi, Rafael - Álvarez, María Noel

Resumen:

Trypanosoma cruzi is a flagellated protozoan that undergoes a complex life cycle between hematophagous insects and mammals. In humans, this parasite causes Chagas disease, which in thirty percent of those infected, would result in serious chronic pathologies and even death. Macrophages participate in the first stages of infection, mounting a cytotoxic response which promotes massive oxidative damage to the parasite. On the other hand, T. cruzi is equipped with a robust antioxidant system to repeal the oxidative attack from macrophages. This work was conceived to explicitly assess the role of mammalian cell-derived superoxide radical in a murine model of acute infection by T. cruzi. Macrophages derived from Nox2-deficient (gp91phox-/-) mice produced marginal amounts of superoxide radical and were more susceptible to parasite infection than those derived from wild type (wt) animals. Also, the lack of superoxide radical led to an impairment of parasite differentiation inside gp91phox-/- macrophages. Biochemical or genetic reconstitution of intraphagosomal superoxide radical formation in gp91phox-/- macrophages reverted the lack of control of infection. Along the same line, gp91phox-/- infected mice died shortly after infection. In spite of the higher lethality, parasitemia did not differ between gp91phox-/- and wt animals, recapitulating an observation that has led to conflicting interpretations about the importance of the mammalian oxidative response against T. cruzi. Importantly, gp91phox-/- mice presented higher and disseminated tissue parasitism, as evaluated by both qPCR- and bioimaging-based methodologies. Thus, this work supports that Nox2-derived superoxide radical plays a crucial role to control T. cruzi infection in the early phase of a murine model of Chagas disease.


Detalles Bibliográficos
2021
Superoxide radical
Trypanosoma cruzi
Macrophages
Nox2
Oxidative stress
Chagas disease
ANIMALES
ENFERMEDAD DE CHAGAS
MACROFAGOS
SUPEROXIDOS
RATONES
ESTRES OXIDATIVO
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/40686
https://doi.org/10.1016/j.redox.2021.102085
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)