Network anomaly detection with Net-GAN, a generative adversarial network for analysis of multivariate time-series.
Resumen:
We introduce Net-GAN, a novel approach to network anomaly detection in time-series, using recurrent neural networks (RNNs) and generative adversarial networks (GAN). Different from the state of the art, which traditionally focuses on univariate measurements, Net-GAN detects anomalies in multivariate time-series, exploiting temporal dependencies through RNNs. Net-GAN discovers the underlying distribution of the baseline, multivariate data, without making any assumptions on its nature, offering a powerful approach to detect anomalies in complex, difficult to model network monitoring data. We present preliminary detection results in different monitoring scenarios, including anomaly detection in sensor data, and intrusion detection in network measurements.
2020 | |
Computing methodologies Anomaly detection Machine learning algorithms Multivariate time-series Generative models GAN LSTM |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/25470 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Sumario: | Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica |
---|