Network anomaly detection with Net-GAN, a generative adversarial network for analysis of multivariate time-series.

García González, Gastón - Casas, Pedro - Fernández, Alicia - Gómez, Gabriel

Resumen:

We introduce Net-GAN, a novel approach to network anomaly detection in time-series, using recurrent neural networks (RNNs) and generative adversarial networks (GAN). Different from the state of the art, which traditionally focuses on univariate measurements, Net-GAN detects anomalies in multivariate time-series, exploiting temporal dependencies through RNNs. Net-GAN discovers the underlying distribution of the baseline, multivariate data, without making any assumptions on its nature, offering a powerful approach to detect anomalies in complex, difficult to model network monitoring data. We present preliminary detection results in different monitoring scenarios, including anomaly detection in sensor data, and intrusion detection in network measurements.


Detalles Bibliográficos
2020
Computing methodologies
Anomaly detection
Machine learning algorithms
Multivariate time-series
Generative models
GAN
LSTM
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/25470
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)