Human activity recognition using machine learning techniques in a low-resource embedded system

Stolovas, Ilana - Suárez, Santiago - Pereyra, Diego - De Izaguirre, Francisco - Cabrera, Varinia

Resumen:

Human activity recognition aims to infer a person’s actions from a set of observations captured by several sensors. Data acquisition, processing and inference on edge devices add a complexity factor to the task, as they involve a trade-off between hardware efficiency and performance. We present a prototype of a wearable device that identifies a person’s activity: walking, running or staying still. The system consists of a Texas Instruments MSP-EXP430G2ET launchpad, connected to a BOOSTXL-SENSORS boosterpack with a BMI160 accelerometer. The designed prototype can take acceleration measurements, process them and either transmit them to a computer or classify the activity in the microcontroller. Additionally, our system has LEDs to display coloured signals according to the inferred activity in real-time. The classification algorithm is based on the calculation of statistical features (mean, standard deviation, maximum and minimum) for each accelerometer axis, the application of a dimensionality reduction algorithm (LDA, Linear Discriminant Analysis) and an SVM (Support Vector Machines) classification model.


Detalles Bibliográficos
2021
Este trabajo fue parcialmente financiado por la Comisión Académica de Posgrado (CAP, UdelaR), Espacio Interdisciplinario (EI, UdelaR) y la Comisión Sectorial de Investigación Científica (CSIC, UdelaR) “Proyecto I + D : Sistema electrónico para la caracterización del comportamiento de ovinos".
Human Activity Recognition
Acceleration Sensor
Linear Discriminant Analysis
Support Vector Machines
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/30548
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522899136872448
author Stolovas, Ilana
author2 Suárez, Santiago
Pereyra, Diego
De Izaguirre, Francisco
Cabrera, Varinia
author2_role author
author
author
author
author_facet Stolovas, Ilana
Suárez, Santiago
Pereyra, Diego
De Izaguirre, Francisco
Cabrera, Varinia
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
c3bcb81b64412e329daa56eb303972e9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/30548/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/30548/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/30548/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/30548/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/30548/1/SSPDC21.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Stolovas Ilana, Universidad de la República (Uruguay). Facultad de Ingeniería.
Suárez Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería.
Pereyra Diego, Universidad de la República (Uruguay). Facultad de Ingeniería.
De Izaguirre Francisco, Universidad de la República (Uruguay). Facultad de Ingeniería.
Cabrera Varinia, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Stolovas, Ilana
Suárez, Santiago
Pereyra, Diego
De Izaguirre, Francisco
Cabrera, Varinia
dc.date.accessioned.none.fl_str_mv 2021-12-23T13:49:11Z
dc.date.available.none.fl_str_mv 2021-12-23T13:49:11Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv Human activity recognition aims to infer a person’s actions from a set of observations captured by several sensors. Data acquisition, processing and inference on edge devices add a complexity factor to the task, as they involve a trade-off between hardware efficiency and performance. We present a prototype of a wearable device that identifies a person’s activity: walking, running or staying still. The system consists of a Texas Instruments MSP-EXP430G2ET launchpad, connected to a BOOSTXL-SENSORS boosterpack with a BMI160 accelerometer. The designed prototype can take acceleration measurements, process them and either transmit them to a computer or classify the activity in the microcontroller. Additionally, our system has LEDs to display coloured signals according to the inferred activity in real-time. The classification algorithm is based on the calculation of statistical features (mean, standard deviation, maximum and minimum) for each accelerometer axis, the application of a dimensionality reduction algorithm (LDA, Linear Discriminant Analysis) and an SVM (Support Vector Machines) classification model.
dc.description.sponsorship.none.fl_txt_mv Este trabajo fue parcialmente financiado por la Comisión Académica de Posgrado (CAP, UdelaR), Espacio Interdisciplinario (EI, UdelaR) y la Comisión Sectorial de Investigación Científica (CSIC, UdelaR) “Proyecto I + D : Sistema electrónico para la caracterización del comportamiento de ovinos".
dc.format.extent.es.fl_str_mv 5 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Stolovas, I., Suárez, S., Pereyra, D. y otros. Human activity recognition using machine learning techniques in a low-resource embedded system [Preprint]. Publicado en : IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov 2021, 5 p.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/30548
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI.
dc.relation.ispartof.es.fl_str_mv IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov 2021, pp. 1-5.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.en.fl_str_mv Human Activity Recognition
Acceleration Sensor
Linear Discriminant Analysis
Support Vector Machines
dc.title.none.fl_str_mv Human activity recognition using machine learning techniques in a low-resource embedded system
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Human activity recognition aims to infer a person’s actions from a set of observations captured by several sensors. Data acquisition, processing and inference on edge devices add a complexity factor to the task, as they involve a trade-off between hardware efficiency and performance. We present a prototype of a wearable device that identifies a person’s activity: walking, running or staying still. The system consists of a Texas Instruments MSP-EXP430G2ET launchpad, connected to a BOOSTXL-SENSORS boosterpack with a BMI160 accelerometer. The designed prototype can take acceleration measurements, process them and either transmit them to a computer or classify the activity in the microcontroller. Additionally, our system has LEDs to display coloured signals according to the inferred activity in real-time. The classification algorithm is based on the calculation of statistical features (mean, standard deviation, maximum and minimum) for each accelerometer axis, the application of a dimensionality reduction algorithm (LDA, Linear Discriminant Analysis) and an SVM (Support Vector Machines) classification model.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_8fe0328638d1d15d84e561b0bf1ca90d
identifier_str_mv Stolovas, I., Suárez, S., Pereyra, D. y otros. Human activity recognition using machine learning techniques in a low-resource embedded system [Preprint]. Publicado en : IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov 2021, 5 p.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/30548
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Stolovas Ilana, Universidad de la República (Uruguay). Facultad de Ingeniería.Suárez Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería.Pereyra Diego, Universidad de la República (Uruguay). Facultad de Ingeniería.De Izaguirre Francisco, Universidad de la República (Uruguay). Facultad de Ingeniería.Cabrera Varinia, Universidad de la República (Uruguay). Facultad de Ingeniería.2021-12-23T13:49:11Z2021-12-23T13:49:11Z2021Stolovas, I., Suárez, S., Pereyra, D. y otros. Human activity recognition using machine learning techniques in a low-resource embedded system [Preprint]. Publicado en : IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov 2021, 5 p.https://hdl.handle.net/20.500.12008/30548Human activity recognition aims to infer a person’s actions from a set of observations captured by several sensors. Data acquisition, processing and inference on edge devices add a complexity factor to the task, as they involve a trade-off between hardware efficiency and performance. We present a prototype of a wearable device that identifies a person’s activity: walking, running or staying still. The system consists of a Texas Instruments MSP-EXP430G2ET launchpad, connected to a BOOSTXL-SENSORS boosterpack with a BMI160 accelerometer. The designed prototype can take acceleration measurements, process them and either transmit them to a computer or classify the activity in the microcontroller. Additionally, our system has LEDs to display coloured signals according to the inferred activity in real-time. The classification algorithm is based on the calculation of statistical features (mean, standard deviation, maximum and minimum) for each accelerometer axis, the application of a dimensionality reduction algorithm (LDA, Linear Discriminant Analysis) and an SVM (Support Vector Machines) classification model.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2021-12-22T18:49:45Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) SSPDC21.pdf: 593173 bytes, checksum: c3bcb81b64412e329daa56eb303972e9 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-12-22T19:43:33Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) SSPDC21.pdf: 593173 bytes, checksum: c3bcb81b64412e329daa56eb303972e9 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-12-23T13:49:11Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) SSPDC21.pdf: 593173 bytes, checksum: c3bcb81b64412e329daa56eb303972e9 (MD5) Previous issue date: 2021Este trabajo fue parcialmente financiado por la Comisión Académica de Posgrado (CAP, UdelaR), Espacio Interdisciplinario (EI, UdelaR) y la Comisión Sectorial de Investigación Científica (CSIC, UdelaR) “Proyecto I + D : Sistema electrónico para la caracterización del comportamiento de ovinos".5 p.application/pdfenengUdelar.FI.IEEE URUCON 2021, Montevideo, Uruguay, 24-26 nov 2021, pp. 1-5.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Human Activity RecognitionAcceleration SensorLinear Discriminant AnalysisSupport Vector MachinesHuman activity recognition using machine learning techniques in a low-resource embedded systemPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaStolovas, IlanaSuárez, SantiagoPereyra, DiegoDe Izaguirre, FranciscoCabrera, VariniaElectrónicaMicroelectrónicaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/30548/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/30548/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/30548/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/30548/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALSSPDC21.pdfSSPDC21.pdfapplication/pdf593173http://localhost:8080/xmlui/bitstream/20.500.12008/30548/1/SSPDC21.pdfc3bcb81b64412e329daa56eb303972e9MD5120.500.12008/305482024-07-24 17:25:46.382oai:colibri.udelar.edu.uy:20.500.12008/30548VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:16.440662COLIBRI - Universidad de la Repúblicafalse
spellingShingle Human activity recognition using machine learning techniques in a low-resource embedded system
Stolovas, Ilana
Human Activity Recognition
Acceleration Sensor
Linear Discriminant Analysis
Support Vector Machines
status_str submittedVersion
title Human activity recognition using machine learning techniques in a low-resource embedded system
title_full Human activity recognition using machine learning techniques in a low-resource embedded system
title_fullStr Human activity recognition using machine learning techniques in a low-resource embedded system
title_full_unstemmed Human activity recognition using machine learning techniques in a low-resource embedded system
title_short Human activity recognition using machine learning techniques in a low-resource embedded system
title_sort Human activity recognition using machine learning techniques in a low-resource embedded system
topic Human Activity Recognition
Acceleration Sensor
Linear Discriminant Analysis
Support Vector Machines
url https://hdl.handle.net/20.500.12008/30548