Human activity recognition using machine learning techniques in a low-resource embedded system

Stolovas, Ilana - Suárez, Santiago - Pereyra, Diego - De Izaguirre, Francisco - Cabrera, Varinia

Resumen:

Human activity recognition aims to infer a person’s actions from a set of observations captured by several sensors. Data acquisition, processing and inference on edge devices add a complexity factor to the task, as they involve a trade-off between hardware efficiency and performance. We present a prototype of a wearable device that identifies a person’s activity: walking, running or staying still. The system consists of a Texas Instruments MSP-EXP430G2ET launchpad, connected to a BOOSTXL-SENSORS boosterpack with a BMI160 accelerometer. The designed prototype can take acceleration measurements, process them and either transmit them to a computer or classify the activity in the microcontroller. Additionally, our system has LEDs to display coloured signals according to the inferred activity in real-time. The classification algorithm is based on the calculation of statistical features (mean, standard deviation, maximum and minimum) for each accelerometer axis, the application of a dimensionality reduction algorithm (LDA, Linear Discriminant Analysis) and an SVM (Support Vector Machines) classification model.


Detalles Bibliográficos
2021
Este trabajo fue parcialmente financiado por la Comisión Académica de Posgrado (CAP, UdelaR), Espacio Interdisciplinario (EI, UdelaR) y la Comisión Sectorial de Investigación Científica (CSIC, UdelaR) “Proyecto I + D : Sistema electrónico para la caracterización del comportamiento de ovinos".
Human Activity Recognition
Acceleration Sensor
Linear Discriminant Analysis
Support Vector Machines
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/30548
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)