Human activity recognition using machine learning techniques in a low-resource embedded system
- Autor(es):
- Stolovas, Ilana ; Suárez, Santiago ; Pereyra, Diego ; De Izaguirre, Francisco ; Cabrera, Varinia
- Tipo:
- Preprint
- Versión:
- Enviado
- Financiadores:
- Este trabajo fue parcialmente financiado por la Comisión Académica de Posgrado (CAP, UdelaR), Espacio Interdisciplinario (EI, UdelaR) y la Comisión Sectorial de Investigación Científica (CSIC, UdelaR) “Proyecto I + D : Sistema electrónico para la caracterización del comportamiento de ovinos".
- Resumen:
-
Human activity recognition aims to infer a person’s actions from a set of observations captured by several sensors. Data acquisition, processing and inference on edge devices add a complexity factor to the task, as they involve a trade-off between hardware efficiency and performance. We present a prototype of a wearable device that identifies a person’s activity: walking, running or staying still. The system consists of a Texas Instruments MSP-EXP430G2ET launchpad, connected to a BOOSTXL-SENSORS boosterpack with a BMI160 accelerometer. The designed prototype can take acceleration measurements, process them and either transmit them to a computer or classify the activity in the microcontroller. Additionally, our system has LEDs to display coloured signals according to the inferred activity in real-time. The classification algorithm is based on the calculation of statistical features (mean, standard deviation, maximum and minimum) for each accelerometer axis, the application of a dimensionality reduction algorithm (LDA, Linear Discriminant Analysis) and an SVM (Support Vector Machines) classification model.
- Año:
- 2021
- Idioma:
- Inglés
- Temas:
- Human Activity Recognition
Acceleration Sensor
Linear Discriminant Analysis
Support Vector Machines
- Institución:
- Universidad de la República
- Repositorio:
- COLIBRI
- Enlace(s):
- https://hdl.handle.net/20.500.12008/30548
- Nivel de acceso:
- Acceso abierto