Human activity recognition using machine learning techniques in a low-resource embedded system

 

Autor(es):
Stolovas, Ilana ; Suárez, Santiago ; Pereyra, Diego ; De Izaguirre, Francisco ; Cabrera, Varinia
Tipo:
Preprint
Versión:
Enviado
Financiadores:
Este trabajo fue parcialmente financiado por la Comisión Académica de Posgrado (CAP, UdelaR), Espacio Interdisciplinario (EI, UdelaR) y la Comisión Sectorial de Investigación Científica (CSIC, UdelaR) “Proyecto I + D : Sistema electrónico para la caracterización del comportamiento de ovinos".
Resumen:

Human activity recognition aims to infer a person’s actions from a set of observations captured by several sensors. Data acquisition, processing and inference on edge devices add a complexity factor to the task, as they involve a trade-off between hardware efficiency and performance. We present a prototype of a wearable device that identifies a person’s activity: walking, running or staying still. The system consists of a Texas Instruments MSP-EXP430G2ET launchpad, connected to a BOOSTXL-SENSORS boosterpack with a BMI160 accelerometer. The designed prototype can take acceleration measurements, process them and either transmit them to a computer or classify the activity in the microcontroller. Additionally, our system has LEDs to display coloured signals according to the inferred activity in real-time. The classification algorithm is based on the calculation of statistical features (mean, standard deviation, maximum and minimum) for each accelerometer axis, the application of a dimensionality reduction algorithm (LDA, Linear Discriminant Analysis) and an SVM (Support Vector Machines) classification model.

Año:
2021
Idioma:
Inglés
Temas:
Human Activity Recognition
Acceleration Sensor
Linear Discriminant Analysis
Support Vector Machines
Institución:
Universidad de la República
Repositorio:
COLIBRI
Enlace(s):
https://hdl.handle.net/20.500.12008/30548
Nivel de acceso:
Acceso abierto