Random walk speed is a proper function on Teichmüller space
Resumen:
Consider a closed surface M with negative Euler characteristic, and an admissible probability measure on the fundamental group of M with a finite first moment. Corresponding to each point in the Teichmüller space of M , there is an associated random walk on the hyperbolic plane. We show that the speed of this random walk is a proper function on the Teichmüller space of M , and we relate the growth of the speed to the Teichmüller distance to a basepoint. One key argument is an adaptation of Gouëzel’s pivoting techniques to actions of a fixed group on a sequence of hyperbolic metric spaces.
2022 | |
PIVOTING ARGUMENT SINGULARITY CONJETURE MATHEMATICS - GEOMETRIC TOPOLOGY MATHEMATICS -GROUPS THEORY MATHEMATICS - TOPOLOGY |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/44638 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |