Random walk speed is a proper function on Teichmüller space

Azemar, Aitor - Vaibhav, Gadre - Gouëzel, Sébastien - Haettel, Thomas - Lessa Echeverriarza, Pablo - Uyanik, Caglar

Resumen:

Consider a closed surface M with negative Euler characteristic, and an admissible probability measure on the fundamental group of M with a finite first moment. Corresponding to each point in the Teichmüller space of M , there is an associated random walk on the hyperbolic plane. We show that the speed of this random walk is a proper function on the Teichmüller space of M , and we relate the growth of the speed to the Teichmüller distance to a basepoint. One key argument is an adaptation of Gouëzel’s pivoting techniques to actions of a fixed group on a sequence of hyperbolic metric spaces.


Detalles Bibliográficos
2022
PIVOTING ARGUMENT
SINGULARITY CONJETURE
MATHEMATICS - GEOMETRIC TOPOLOGY
MATHEMATICS -GROUPS THEORY
MATHEMATICS - TOPOLOGY
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/44638
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)