Optimal stopping of Brownian motion with broken drift
Resumen:
We solve an optimal stopping problem where the underlying diffusion is Brownian motion on R with a positive drift changing at zero. It is assumed that the drift μ1 on the negative side is smaller than the drift μ2 on the positive side. The main observation is that if μ2 − μ1 > 1/2 then there exists values of the discounting parameter for which it is not optimal to stop in the vicinity of zero where the drift changes. However, when the discounting gets bigger the stopping region becomes connected and contains zero. This is in contrast with results concerning optimal stopping of skew Brownian motion where the skew point is for all values of the discounting parameter in the continuation region.
2019 | |
Mathematics - Probability | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/33767 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Optimal stopping of oscillating Brownian motion
Autor(es):: Mordecki, Ernesto
Fecha de publicación:: (2019) -
Level set and drift estimation from a reflected brownian motion with drift
Autor(es):: Cholaquidis, Alejandro
Fecha de publicación:: (2021) -
On the finiteness of the moments of the measure of level sets of random fields
Autor(es):: Armentano, Diego
Fecha de publicación:: (2020) -
Two-sided optimal stopping for Lévy processes
Autor(es):: Mordecki, Ernesto
Fecha de publicación:: (2021) -
Brownian motion on stationary random manifolds
Autor(es):: Lessa Echeverriarza, Pablo
Fecha de publicación:: (2014)