Optimal stopping of Brownian motion with broken drift

Mordecki, Ernesto - Salminen, Paavo

Resumen:

We solve an optimal stopping problem where the underlying diffusion is Brownian motion on R with a positive drift changing at zero. It is assumed that the drift μ1 on the negative side is smaller than the drift μ2 on the positive side. The main observation is that if μ2 − μ1 > 1/2 then there exists values of the discounting parameter for which it is not optimal to stop in the vicinity of zero where the drift changes. However, when the discounting gets bigger the stopping region becomes connected and contains zero. This is in contrast with results concerning optimal stopping of skew Brownian motion where the skew point is for all values of the discounting parameter in the continuation region.


Detalles Bibliográficos
2019
Mathematics - Probability
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/33767
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)