A characterization of local nilpotence for dimension two polynomial derivations
Resumen:
Let k be an algebraically closed field. We prove that a polynomial k-derivation D in two variables is locally nilpotent if and only if the subgroup of polynomial k-automorphisms which commute with D admits elements whose degree is arbitrary big.
2020 | |
Commutative Algebra Polynomials Locally nilpotent derivations |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/38864 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
On the Automorphism Group of a polynomial differential ring in two variables
Autor(es):: Baltazar, Rene
Fecha de publicación:: (2019) -
Aspects of the polynomial affine model of gravity in three dimensions: with focus in the cosmological solutions
Autor(es):: Castillo-Felisola, Oscar
Fecha de publicación:: (2022) -
Analysis of Rabin's irreducibility test for polynomials over finite fields
Autor(es):: Panario, Daniel
Fecha de publicación:: (2001) -
Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
Autor(es):: Azaïs, J.M.
Fecha de publicación:: (2021) -
Complexity and random polynomials
Autor(es):: Armentano, Diego
Fecha de publicación:: (2012)