A characterization of local nilpotence for dimension two polynomial derivations
Resumen:
Let k be an algebraically closed field. We prove that a polynomial k-derivation D in two variables is locally nilpotent if and only if the subgroup of polynomial k-automorphisms which commute with D admits elements whose degree is arbitrary big.
2020 | |
Commutative Algebra Polynomials Locally nilpotent derivations |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/38864 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |