Net-GAN : Recurrent generative adversarial networks for network anomaly detection in multivariate time-series.
Resumen:
We introduce Net-GAN, a novel approach to network anomaly detection in time-series, using recurrent neural networks (RNNs) and generative adversarial learning (GAN). Different from the state of the art, which traditionally focuses on univariate measurements, Net-GAN detects anomalies in multivariate timeseries, exploiting temporal dependencies through RNNs. Net- GAN discovers the underlying distribution of the baseline, multivariate data, without making any assumptions on its nature, offering a powerful approach to detect anomalies in complex, difficult to model network monitoring data
2020 | |
Computing methodologies Anomaly detection Machine learning algorithms Multivariate time-series Generative models GAN LSTM |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/25478 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Network anomaly detection with Net-GAN, a generative adversarial network for analysis of multivariate time-series.
Autor(es):: García González, Gastón
Fecha de publicación:: (2020) -
On the usage of generative models for network anomaly detection in multivariate time-series.
Autor(es):: García González, Gastón
Fecha de publicación:: (2020) -
Fake it till you detect it : Continual anomaly detection in multivariate time-series using generative AI.
Autor(es):: García González, Gastón
Fecha de publicación:: (2023) -
Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions
Autor(es):: García González, Gastón
Fecha de publicación:: (2022) -
DC-VAE, Fine-grained anomaly detection in multivariate time-series with dilated convolutions and variational auto encoders
Autor(es):: García González, Gastón
Fecha de publicación:: (2022)