Net-GAN : Recurrent generative adversarial networks for network anomaly detection in multivariate time-series.

García González, Gastón - Casas, Pedro - Fernández, Alicia - Gómez, Gabriel

Resumen:

We introduce Net-GAN, a novel approach to network anomaly detection in time-series, using recurrent neural networks (RNNs) and generative adversarial learning (GAN). Different from the state of the art, which traditionally focuses on univariate measurements, Net-GAN detects anomalies in multivariate timeseries, exploiting temporal dependencies through RNNs. Net- GAN discovers the underlying distribution of the baseline, multivariate data, without making any assumptions on its nature, offering a powerful approach to detect anomalies in complex, difficult to model network monitoring data


Detalles Bibliográficos
2020
Computing methodologies
Anomaly detection
Machine learning algorithms
Multivariate time-series
Generative models
GAN
LSTM
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/25478
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)