Cohomología en especies

Cóppola Rodríguez, Javier

Supervisor(es): Pereira López, Mariana

Resumen:

El principal objetivo de este trabajo es el estudio de la cohomología de comonoides linealizados en especies desde el punto de vista de la cohomología de objetos cosimpliciales, y la relación de esta cohomología en grados bajos con el torcimiento de ciertas estructuras. Esto último viene inspirado por resultados conocidos en teoría de grupos sobre torcimiento de multiplicación y de asociadores. En el primer cap´ıtulo presentamos nuestro objeto de estudio: las especies, en particular las especies comonoides linealizadas. Daremos las definiciones báasicas y los principales ejemplos. En el segundo capítulo mostramos una familia de ejemplos de cohomologías conocidas, desde un punto de vista en común: los objetos cosimpliciales. En el tercer capítulo definimos la cohomología de una especie comonoide linealizada dentro del marco presentado en el cap´ıtulo anterior, y presentamos algunos ejemplos. En el cuarto capítulo vinculamos la cohomología en grados bajos con el torcimiento de estructuras algebraicas. Presentamos resultados conocidos para grupos, un resultado conocido para grado 2 en especies, y un resultado original para grado 3 en especies. En el quinto capítulo mostramos una definición del producto cup en la cohomología de anillos cosimpliciales, y unos primeros resultados obtenidos en este contexto.


Detalles Bibliográficos
2014
Español
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/5468
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807522815605211136
author Cóppola Rodríguez, Javier
author_facet Cóppola Rodríguez, Javier
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
4afdbb8c545fd630ea7db775da747b2f
ef48816a10f2d45f2e2fee2f478e2faf
9da0b6dfac957114c6a7714714b86306
3e57848b3a649e881aded70a661e2607
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/5468/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/5468/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/5468/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/5468/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/5468/1/tesiscoppola_maestria.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Cóppola Rodríguez Javier, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
dc.creator.advisor.none.fl_str_mv Pereira López, Mariana
dc.creator.none.fl_str_mv Cóppola Rodríguez, Javier
dc.date.accessioned.none.fl_str_mv 2016-02-16T17:37:06Z
dc.date.available.none.fl_str_mv 2016-02-16T17:37:06Z
dc.date.issued.none.fl_str_mv 2014
dc.description.abstract.none.fl_txt_mv El principal objetivo de este trabajo es el estudio de la cohomología de comonoides linealizados en especies desde el punto de vista de la cohomología de objetos cosimpliciales, y la relación de esta cohomología en grados bajos con el torcimiento de ciertas estructuras. Esto último viene inspirado por resultados conocidos en teoría de grupos sobre torcimiento de multiplicación y de asociadores. En el primer cap´ıtulo presentamos nuestro objeto de estudio: las especies, en particular las especies comonoides linealizadas. Daremos las definiciones báasicas y los principales ejemplos. En el segundo capítulo mostramos una familia de ejemplos de cohomologías conocidas, desde un punto de vista en común: los objetos cosimpliciales. En el tercer capítulo definimos la cohomología de una especie comonoide linealizada dentro del marco presentado en el cap´ıtulo anterior, y presentamos algunos ejemplos. En el cuarto capítulo vinculamos la cohomología en grados bajos con el torcimiento de estructuras algebraicas. Presentamos resultados conocidos para grupos, un resultado conocido para grado 2 en especies, y un resultado original para grado 3 en especies. En el quinto capítulo mostramos una definición del producto cup en la cohomología de anillos cosimpliciales, y unos primeros resultados obtenidos en este contexto.
dc.format.extent.es.fl_str_mv 53 p.
dc.format.mimetype.none.fl_str_mv aplication/pdf
dc.identifier.citation.es.fl_str_mv CÓPPOLA RODRÍGUEZ, J. "Cohomología en especies". Tesis de maestría. Montevideo : UR. FC-CMAT, 2014.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/5468
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv UR. FC-CMAT
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.title.none.fl_str_mv Cohomología en especies
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description El principal objetivo de este trabajo es el estudio de la cohomología de comonoides linealizados en especies desde el punto de vista de la cohomología de objetos cosimpliciales, y la relación de esta cohomología en grados bajos con el torcimiento de ciertas estructuras. Esto último viene inspirado por resultados conocidos en teoría de grupos sobre torcimiento de multiplicación y de asociadores. En el primer cap´ıtulo presentamos nuestro objeto de estudio: las especies, en particular las especies comonoides linealizadas. Daremos las definiciones báasicas y los principales ejemplos. En el segundo capítulo mostramos una familia de ejemplos de cohomologías conocidas, desde un punto de vista en común: los objetos cosimpliciales. En el tercer capítulo definimos la cohomología de una especie comonoide linealizada dentro del marco presentado en el cap´ıtulo anterior, y presentamos algunos ejemplos. En el cuarto capítulo vinculamos la cohomología en grados bajos con el torcimiento de estructuras algebraicas. Presentamos resultados conocidos para grupos, un resultado conocido para grado 2 en especies, y un resultado original para grado 3 en especies. En el quinto capítulo mostramos una definición del producto cup en la cohomología de anillos cosimpliciales, y unos primeros resultados obtenidos en este contexto.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_36b27ace769c274792b1ba61831a47cf
identifier_str_mv CÓPPOLA RODRÍGUEZ, J. "Cohomología en especies". Tesis de maestría. Montevideo : UR. FC-CMAT, 2014.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/5468
publishDate 2014
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling Cóppola Rodríguez Javier, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.2016-02-16T17:37:06Z2016-02-16T17:37:06Z2014CÓPPOLA RODRÍGUEZ, J. "Cohomología en especies". Tesis de maestría. Montevideo : UR. FC-CMAT, 2014.http://hdl.handle.net/20.500.12008/5468El principal objetivo de este trabajo es el estudio de la cohomología de comonoides linealizados en especies desde el punto de vista de la cohomología de objetos cosimpliciales, y la relación de esta cohomología en grados bajos con el torcimiento de ciertas estructuras. Esto último viene inspirado por resultados conocidos en teoría de grupos sobre torcimiento de multiplicación y de asociadores. En el primer cap´ıtulo presentamos nuestro objeto de estudio: las especies, en particular las especies comonoides linealizadas. Daremos las definiciones báasicas y los principales ejemplos. En el segundo capítulo mostramos una familia de ejemplos de cohomologías conocidas, desde un punto de vista en común: los objetos cosimpliciales. En el tercer capítulo definimos la cohomología de una especie comonoide linealizada dentro del marco presentado en el cap´ıtulo anterior, y presentamos algunos ejemplos. En el cuarto capítulo vinculamos la cohomología en grados bajos con el torcimiento de estructuras algebraicas. Presentamos resultados conocidos para grupos, un resultado conocido para grado 2 en especies, y un resultado original para grado 3 en especies. En el quinto capítulo mostramos una definición del producto cup en la cohomología de anillos cosimpliciales, y unos primeros resultados obtenidos en este contexto.Submitted by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2016-02-16T17:37:06Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tesiscoppola_maestria.pdf: 337490 bytes, checksum: 3e57848b3a649e881aded70a661e2607 (MD5)Made available in DSpace on 2016-02-16T17:37:06Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tesiscoppola_maestria.pdf: 337490 bytes, checksum: 3e57848b3a649e881aded70a661e2607 (MD5) Previous issue date: 201453 p.aplication/pdfesspaUR. FC-CMATLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Cohomología en especiesTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCóppola Rodríguez, JavierPereira López, MarianaUniversidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Magíster en MatemáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/5468/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/5468/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822064http://localhost:8080/xmlui/bitstream/20.500.12008/5468/3/license_textef48816a10f2d45f2e2fee2f478e2fafMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/5468/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALtesiscoppola_maestria.pdftesiscoppola_maestria.pdfapplication/pdf337490http://localhost:8080/xmlui/bitstream/20.500.12008/5468/1/tesiscoppola_maestria.pdf3e57848b3a649e881aded70a661e2607MD5120.500.12008/54682021-03-03 19:43:47.656oai:colibri.udelar.edu.uy:20.500.12008/5468VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:48.855213COLIBRI - Universidad de la Repúblicafalse
spellingShingle Cohomología en especies
Cóppola Rodríguez, Javier
status_str acceptedVersion
title Cohomología en especies
title_full Cohomología en especies
title_fullStr Cohomología en especies
title_full_unstemmed Cohomología en especies
title_short Cohomología en especies
title_sort Cohomología en especies
url http://hdl.handle.net/20.500.12008/5468