QUBO formulation for aircraft load optimization

Gatti, Laura - Sotelo, Rafael - Orihuela, Juan - Gibert, Diego - D’ambrosio, Renzo - Fuidio, Federico

Resumen:

In this article, we tackle the aircraft load optimization problem using classical optimization algorithms and optimization algorithms with QUBO (quadratic unconstrained binary optimization) formulation to run on quantum annealers. The problem is realistic based on plans of a certain aircraft model, the Airbus A330 200F, and can be adapted to other models from other manufacturers. We maximize a characteristic of the combination of containers (unit load device, ULD) to be transported, be it weight, volume, profit, or another, while complying with necessary parameters related to the flight such as the balance of the center of gravity as well as stress in the structure. Finally, examples of the results of different runs on QUBO in the D-Wave simulator are presented.


Detalles Bibliográficos
2024
Aircraft load optimization
Quantum annealing
QUBO
Quantum computing
Inglés
Universidad de Montevideo
REDUM
https://hdl.handle.net/20.500.12806/2652
https://doi.org/10.1007/s11128-024-04569-6
Acceso embargado
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
_version_ 1814332643526836224
author Gatti, Laura
author2 Sotelo, Rafael
Orihuela, Juan
Gibert, Diego
D’ambrosio, Renzo
Fuidio, Federico
author2_role author
author
author
author
author
author_facet Gatti, Laura
Sotelo, Rafael
Orihuela, Juan
Gibert, Diego
D’ambrosio, Renzo
Fuidio, Federico
author_role author
bitstream.checksum.fl_str_mv f4fedb331dd061f9e1457e8d04e36667
4460e5956bc1d1639be9ae6146a50347
691ed290c8bf8671811a9242b7fc04b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
bitstream.url.fl_str_mv http://redum.um.edu.uy/bitstream/20.500.12806/2652/1/qubo%20aircraft%20load.pdf
http://redum.um.edu.uy/bitstream/20.500.12806/2652/2/license_rdf
http://redum.um.edu.uy/bitstream/20.500.12806/2652/3/license.txt
collection REDUM
dc.creator.none.fl_str_mv Gatti, Laura
Sotelo, Rafael
Orihuela, Juan
Gibert, Diego
D’ambrosio, Renzo
Fuidio, Federico
dc.date.accessioned.none.fl_str_mv 2024-10-28T14:26:14Z
dc.date.available.none.fl_str_mv 2024-10-28T14:26:14Z
dc.date.issued.es.fl_str_mv 2024
dc.description.abstract.none.fl_txt_mv In this article, we tackle the aircraft load optimization problem using classical optimization algorithms and optimization algorithms with QUBO (quadratic unconstrained binary optimization) formulation to run on quantum annealers. The problem is realistic based on plans of a certain aircraft model, the Airbus A330 200F, and can be adapted to other models from other manufacturers. We maximize a characteristic of the combination of containers (unit load device, ULD) to be transported, be it weight, volume, profit, or another, while complying with necessary parameters related to the flight such as the balance of the center of gravity as well as stress in the structure. Finally, examples of the results of different runs on QUBO in the D-Wave simulator are presented.
dc.format.mimetype.es.fl_str_mv text/plain
dc.identifier.doi.es.fl_str_mv https://doi.org/10.1007/s11128-024-04569-6
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12806/2652
dc.language.iso.none.fl_str_mv eng
dc.relation.ispartof.es.fl_str_mv Quantum Inf Process, vol. 23, n°355, 1-25
dc.rights.es.fl_str_mv Embargado
dc.rights.license.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source.none.fl_str_mv reponame:REDUM
instname:Universidad de Montevideo
instacron:Universidad de Montevideo
dc.subject.keyword.es.fl_str_mv Aircraft load optimization
Quantum annealing
QUBO
Quantum computing
dc.title.none.fl_str_mv QUBO formulation for aircraft load optimization
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es.fl_str_mv Aceptada
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description In this article, we tackle the aircraft load optimization problem using classical optimization algorithms and optimization algorithms with QUBO (quadratic unconstrained binary optimization) formulation to run on quantum annealers. The problem is realistic based on plans of a certain aircraft model, the Airbus A330 200F, and can be adapted to other models from other manufacturers. We maximize a characteristic of the combination of containers (unit load device, ULD) to be transported, be it weight, volume, profit, or another, while complying with necessary parameters related to the flight such as the balance of the center of gravity as well as stress in the structure. Finally, examples of the results of different runs on QUBO in the D-Wave simulator are presented.
eu_rights_str_mv embargoedAccess
format article
id REDUM_7fd8e12abf6da929042ac5524a06fa5c
instacron_str Universidad de Montevideo
institution Universidad de Montevideo
instname_str Universidad de Montevideo
language eng
network_acronym_str REDUM
network_name_str REDUM
oai_identifier_str oai:redum.um.edu.uy:20.500.12806/2652
publishDate 2024
reponame_str REDUM
repository.mail.fl_str_mv nolascoaga@um.edu.uy
repository.name.fl_str_mv REDUM - Universidad de Montevideo
repository_id_str 10501
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Embargado
http://creativecommons.org/licenses/by-nc-nd/4.0/
spelling Attribution-NonCommercial-NoDerivatives 4.0 InternacionalEmbargadohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccess38973e79-0ea4-49cf-8102-d2e565b9e7e9180163ab-97d6-4ede-8a82-db2e185300301f45e1a6-5dce-4f54-93ed-ecaaa20a38939e4a1e00-4e87-4793-950f-80f55a2cb9b24e388bcb-7e3f-46bc-a72e-273f08ae3f285c299ed5-edac-48ab-b2d3-da640b2a68be2024-10-28T14:26:14Z2024-10-28T14:26:14Z2024https://hdl.handle.net/20.500.12806/2652https://doi.org/10.1007/s11128-024-04569-6text/plainengQuantum Inf Process, vol. 23, n°355, 1-25QUBO formulation for aircraft load optimizationArtículoAceptadainfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/articleIn this article, we tackle the aircraft load optimization problem using classical optimization algorithms and optimization algorithms with QUBO (quadratic unconstrained binary optimization) formulation to run on quantum annealers. The problem is realistic based on plans of a certain aircraft model, the Airbus A330 200F, and can be adapted to other models from other manufacturers. We maximize a characteristic of the combination of containers (unit load device, ULD) to be transported, be it weight, volume, profit, or another, while complying with necessary parameters related to the flight such as the balance of the center of gravity as well as stress in the structure. Finally, examples of the results of different runs on QUBO in the D-Wave simulator are presented.Aircraft load optimizationQuantum annealingQUBOQuantum computingreponame:REDUMinstname:Universidad de Montevideoinstacron:Universidad de MontevideoGatti, LauraSotelo, RafaelOrihuela, JuanGibert, DiegoD’ambrosio, RenzoFuidio, FedericoORIGINALqubo aircraft load.pdfqubo aircraft load.pdfapplication/pdf1737718http://redum.um.edu.uy/bitstream/20.500.12806/2652/1/qubo%20aircraft%20load.pdff4fedb331dd061f9e1457e8d04e36667MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://redum.um.edu.uy/bitstream/20.500.12806/2652/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82117http://redum.um.edu.uy/bitstream/20.500.12806/2652/3/license.txt691ed290c8bf8671811a9242b7fc04b6MD5320.500.12806/26522024-10-28 11:26:15.409oai:redum.um.edu.uy:20.500.12806/2652TGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEgCkF1dG9yaXphY2nDs24gcGFyYSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBVbml2ZXJzaWRhZCBkZSBNb250ZXZpZGVvIChSRURVTSkKClBhcmEgcXVlIGVsIFJFRFVNIGFsbWFjZW5lLCByZXByb2R1emNhIHkgZGlmdW5kYSBww7pibGljYW1lbnRlIGxhIG9icmEgcXVlIHNlIGRlcG9zaXRhLCBlcyBuZWNlc2FyaW8gcXVlIGFjZXB0ZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoxLglBdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIE1vbnRldmlkZW8gZWwgZGVyZWNobyBubyBleGNsdXNpdm8gZGUgYWxtYWNlbmFyLCByZXByb2R1Y2lyLCBjb211bmljYXIgeS9vIGRpc3RyaWJ1aXIgZ3JhdHVpdGEgeSBww7pibGljYW1lbnRlIGVzdGEgb2JyYSBiYWpvIGZvcm1hdG8gZWxlY3Ryw7NuaWNvIGVuIGVsIFJFRFVNLiAKMi4JRXN0b3kgZGUgYWN1ZXJkbyBlbiBxdWUgbGEgVW5pdmVyc2lkYWQgZGUgTW9udGV2aWRlbyBwdWVkYSBjb25zZXJ2YXIgbcOhcyBkZSB1bmEgY29waWEgZGUgZXN0YSBvYnJhIHksIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkbywgY29udmVydGlybG8gYSBjdWFscXVpZXIgZm9ybWF0byBkZSBhcmNoaXZvLCBtZWRpbyBvIHNvcG9ydGUsIHBhcmEgcHJvcMOzc2l0b3MgZGUgc2VndXJpZGFkLCBwcmVzZXJ2YWNpw7NuIHkgYWNjZXNvLiAKMy4JQXV0b3Jpem8gbGEgcmVwcm9kdWNjacOzbiB0b3RhbCBvIHBhcmNpYWwgZGUgbGEgb2JyYSwgc2llbXByZSBhc29jaWFkYSBhIG1pIG5vbWJyZSBlbiBjYWxpZGFkIGRlIGF1dG9yLgo0LglFbiBuaW5ndW5hIGNpcmN1bnN0YW5jaWEgYXV0b3Jpem8gbGEgYWRhcHRhY2nDs24sIHRyYW5zZm9ybWFjacOzbiwgdHJhZHVjY2nDs24geSBlbiBnZW5lcmFsIGN1YWxxdWllciB0aXBvIGRlIG1vZGlmaWNhY2nDs24gYSBtaSBvYnJhLgo1LglEZWNsYXJvIHF1ZSBlc3RhIG9icmEgZXMgdW4gdHJhYmFqbyBvcmlnaW5hbCB5IHF1ZSBzb3kgYXV0b3IgZGUgbGEgbWlzbWEgeSBxdWUgbm8gaGUgb3RvcmdhZG8gZXNvcyBkZXJlY2hvcyBhIHRlcmNlcm9zIHF1ZSBwdWVkYW4gbGltaXRhciBhIGxhIFVNIHBhcmEgZWplcmNlcmxvcy4gCjYuCUVuIGVsIGNhc28gZGUgcXVlIGVzdGEgb2JyYSBjb250ZW5nYSBtYXRlcmlhbCBwYXJhIGVsIHF1ZSBubyBwb3NlbyBkZXJlY2hvcyBkZSBhdXRvciwgZGVjbGFybyBxdWUgaGUgb2J0ZW5pZG8gZWwgcGVybWlzbyBzaW4gcmVzdHJpY2Npb25lcyBkZWwKcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIGxhIFVuaXZlcnNpZGFkIGRlIE1vbnRldmlkZW8gbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGRpY2hvIG1hdGVyaWFsIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGVsIHRleHRvIG8gY29udGVuaWRvIGRlIGxhIHByZXNlbnRhY2nDs24uIAo3LglEZWNsYXJvIHF1ZSBsYSBVbml2ZXJzaWRhZCBkZSBNb250ZXZpZGVvIHF1ZWRhIGV4Y2x1aWRhIGRlIHRvZGEgcmVzcG9uc2FiaWxpZGFkIGVuIGNhc28gZGUgZXZlbnR1YWxlcyByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zIHBvciBpbmZyaW5naXIgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLiAKOC4JRGVjbGFybyBxdWUgbGFzIG9waW5pb25lcyBleHByZXNhZGFzIGVuIGVzdGUgZG9jdW1lbnRvIG5vIHNvbiBuZWNlc2FyaWFtZW50ZSBjb21wYXJ0aWRhcyBwb3IgbGEgVW5pdmVyc2lkYWQgZGUgTW9udGV2aWRlby4gCjkuCUF1dG9yaXpvIGEgbG9zIHVzdWFyaW9zIGRlbCBSRURVTSBwYXJhIHV0aWxpemFyLCByZXByb2R1Y2lyIHkgZGlzdHJpYnVpciBlc3RlIGRvY3VtZW50byBiYWpvIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgNC4wLiAoQXRyaWJ1Y2nDs24tTm9Db21lcmNpYWwtU2luRGVyaXZhZGFzIDQuMCBJbnRlcm5hY2lvbmFsKS4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyB0w6lybWlub3MgZGUgZXN0YSBhdXRvcml6YWNpw7NuLCBwb3IgZmF2b3IgZW52w61lbGEgYSBiaWJsaW90ZWNhQHVtLmVkdS51eQoKCgo=Universidadhttps://um.edu.uy/https://redum.um.edu.uy/oai/requestnolascoaga@um.edu.uyUruguayopendoar:105012024-10-28T14:26:15REDUM - Universidad de Montevideofalse
spellingShingle QUBO formulation for aircraft load optimization
Gatti, Laura
Aircraft load optimization
Quantum annealing
QUBO
Quantum computing
status_str acceptedVersion
title QUBO formulation for aircraft load optimization
title_full QUBO formulation for aircraft load optimization
title_fullStr QUBO formulation for aircraft load optimization
title_full_unstemmed QUBO formulation for aircraft load optimization
title_short QUBO formulation for aircraft load optimization
title_sort QUBO formulation for aircraft load optimization
topic Aircraft load optimization
Quantum annealing
QUBO
Quantum computing
url https://hdl.handle.net/20.500.12806/2652
https://doi.org/10.1007/s11128-024-04569-6