Visual Saliency Detection in Natural Scene Images using a Selective Attention Model

Obtención de rasgos preponderantes en imágenes de escena natural mediante un Modelo de Atención Selectiva

González, Yesenia - Solano, Alan
Detalles Bibliográficos
2017
Obtención de rasgos preponderantes
Atención selectiva
Filtro de Gabor en 2D
Agrupamiento de datos
Red neuronal de competencia
Visual saliency detection
Selective attention
2D Gabor filter
Data clustering
Competitive neural network
Español
Universidad de Montevideo
REDUM
http://revistas.um.edu.uy/index.php/ingenieria/article/view/306
https://hdl.handle.net/20.500.12806/2481
Acceso abierto
Atribución 4.0 Internacional
Resumen:
Sumario:This article presents visual saliency detection in natural scene images. Images are processed using RGB, HSI and CMY color models and use some combinations of color components to feed a selective attention model based on the application of a two-dimensional specialized Gabor filter, which gives some of the features (like edges and outstanding contrasts), to be later highlighted by a clustering stage and a competitive artificial neural network stage. The simulations results show that the system is able to perform visual saliency detection in simple scenes and show encouraging results in complex scenes. For the tests were used images in RGB color format of 640 × 480 pixels (VGA). The implementation was made in the MATLAB® language.