Prediction using ARFIMA and FOU models of affluent energy

Predicción mediante modelos AFIRMA y FOU de energía afluente

Kalemkerian, Juan
Detalles Bibliográficos
2017
Modelos ARFIMA
Ornstein-Uhlenbeck fraccionarios
Memoria larga
ARFIMA model
Fractional Ornstein-Uhlenbeck
Long range dependence
Español
Universidad de Montevideo
REDUM
http://revistas.um.edu.uy/index.php/ingenieria/article/view/310
https://hdl.handle.net/20.500.12806/2485
Acceso abierto
Atribución 4.0 Internacional
Resumen:
Sumario:In this work we study predictions from ARFIMA and FOU models for the weekly data series of affluent energy generated by hydroelectric dams in Uruguay between 1909 and 2012. The estimation of Hurst coefficient suggests modeling through long memory time series. We present two families of time series models of this type, ARFIMA and FOU (fractional Ornstein-Uhlenbeck) models. Their parameters are estimated and taking into account their predictive power, their performance is compared.