Comparison of LSTM and Transformer Neural Network on multiple approaches for weblogs attack detection

Martínez Varsi, Nicolás

Supervisor(es): Yovine, Sergio

Resumen:

El presente trabajo realiza una discusión y comparación de diferentes enfoques y redes neuronales para la clasificación de secuencias, en un contexto de detección de ataques en servicios web. El primer enfoque para la detección de ataques mediante clasificación de logs es la creación de modelos de clasificación basados en caracteres. El segundo en- foque parte de la creación de modelos de lenguaje que predicen la probabilidad del siguiente carácter en una secuencia, que en conjunto con una técnica de cálculo de umbrales para las probabilidades, clasifican los logs para detectar ataques. Estos enfoques fueron trabajados con redes neuronales de tipo LSTM, comunes en el procesamiento de secuencias, así también como con redes neuronales Trans- former. Las redes Transformer han tenido muy buenos resultados en sistemas de traducción de máquina y problemas similares en cuanto a procesamiento de lenguaje natural, pero no ha sido explorado su uso en detección de ataques en base a logs. Para presentar las comparaciones de enfoques y redes neuronales, se realizó un análisis del estado del arte, de los enfoques a aplicar y se realizaron múlti- ples experimentos. Estos experimentos implicaron el desarrollo de códigos para el análisis, transformación y preparación de los data sets, así como el entrenamiento y evaluación de los modelos y clasificaciones. Finalmente se plantean conclusiones sobre el uso de cada enfoque y red neu- ronal, así como el planteo de futuros trabajos que puedan mejorar y responder cuestiones encontradas en el proyecto.


Detalles Bibliográficos
2022
Agencia Nacional de Investigación e Innovación
Neural Network
Deep Learning
Transformers
LSTM
Attack Detection
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/2363
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
_version_ 1814959264007979008
author Martínez Varsi, Nicolás
author_facet Martínez Varsi, Nicolás
author_role author
bitstream.checksum.fl_str_mv 3c9d86d36485746409b4281a0893d729
259e14cd5b8e0336f3ed3e8e4378de65
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/2363/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/2363/1/Nicolas_Martinez_Varsi_Tesis_master_2022.pdf
collection REDI
dc.creator.advisor.none.fl_str_mv Yovine, Sergio
dc.creator.none.fl_str_mv Martínez Varsi, Nicolás
dc.date.accessioned.none.fl_str_mv 2022-11-29T14:55:37Z
dc.date.available.none.fl_str_mv 2022-11-29T14:55:37Z
dc.date.issued.none.fl_str_mv 2022-03-10
dc.description.abstract.none.fl_txt_mv El presente trabajo realiza una discusión y comparación de diferentes enfoques y redes neuronales para la clasificación de secuencias, en un contexto de detección de ataques en servicios web. El primer enfoque para la detección de ataques mediante clasificación de logs es la creación de modelos de clasificación basados en caracteres. El segundo en- foque parte de la creación de modelos de lenguaje que predicen la probabilidad del siguiente carácter en una secuencia, que en conjunto con una técnica de cálculo de umbrales para las probabilidades, clasifican los logs para detectar ataques. Estos enfoques fueron trabajados con redes neuronales de tipo LSTM, comunes en el procesamiento de secuencias, así también como con redes neuronales Trans- former. Las redes Transformer han tenido muy buenos resultados en sistemas de traducción de máquina y problemas similares en cuanto a procesamiento de lenguaje natural, pero no ha sido explorado su uso en detección de ataques en base a logs. Para presentar las comparaciones de enfoques y redes neuronales, se realizó un análisis del estado del arte, de los enfoques a aplicar y se realizaron múlti- ples experimentos. Estos experimentos implicaron el desarrollo de códigos para el análisis, transformación y preparación de los data sets, así como el entrenamiento y evaluación de los modelos y clasificaciones. Finalmente se plantean conclusiones sobre el uso de cada enfoque y red neu- ronal, así como el planteo de futuros trabajos que puedan mejorar y responder cuestiones encontradas en el proyecto.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
dc.identifier.anii.es.fl_str_mv FMV_1_2019_1_155913
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/2363
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv Universidad ORT Uruguay
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento 4.0 Internacional. (CC BY)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.none.fl_str_mv Ciencias Naturales y Exactas
Ciencias de la Computación e Información
dc.subject.es.fl_str_mv Neural Network
Deep Learning
Transformers
LSTM
Attack Detection
dc.title.none.fl_str_mv Comparison of LSTM and Transformer Neural Network on multiple approaches for weblogs attack detection
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.es.fl_str_mv Aceptado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description El presente trabajo realiza una discusión y comparación de diferentes enfoques y redes neuronales para la clasificación de secuencias, en un contexto de detección de ataques en servicios web. El primer enfoque para la detección de ataques mediante clasificación de logs es la creación de modelos de clasificación basados en caracteres. El segundo en- foque parte de la creación de modelos de lenguaje que predicen la probabilidad del siguiente carácter en una secuencia, que en conjunto con una técnica de cálculo de umbrales para las probabilidades, clasifican los logs para detectar ataques. Estos enfoques fueron trabajados con redes neuronales de tipo LSTM, comunes en el procesamiento de secuencias, así también como con redes neuronales Trans- former. Las redes Transformer han tenido muy buenos resultados en sistemas de traducción de máquina y problemas similares en cuanto a procesamiento de lenguaje natural, pero no ha sido explorado su uso en detección de ataques en base a logs. Para presentar las comparaciones de enfoques y redes neuronales, se realizó un análisis del estado del arte, de los enfoques a aplicar y se realizaron múlti- ples experimentos. Estos experimentos implicaron el desarrollo de códigos para el análisis, transformación y preparación de los data sets, así como el entrenamiento y evaluación de los modelos y clasificaciones. Finalmente se plantean conclusiones sobre el uso de cada enfoque y red neu- ronal, así como el planteo de futuros trabajos que puedan mejorar y responder cuestiones encontradas en el proyecto.
eu_rights_str_mv openAccess
format masterThesis
id REDI_ebaf5f2e379d142d1479f08bfd421dda
identifier_str_mv FMV_1_2019_1_155913
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language eng
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/2363
publishDate 2022
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento 4.0 Internacional. (CC BY)
Acceso abierto
spelling Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2022-11-29T14:55:37Z2022-11-29T14:55:37Z2022-03-10https://hdl.handle.net/20.500.12381/2363FMV_1_2019_1_155913El presente trabajo realiza una discusión y comparación de diferentes enfoques y redes neuronales para la clasificación de secuencias, en un contexto de detección de ataques en servicios web. El primer enfoque para la detección de ataques mediante clasificación de logs es la creación de modelos de clasificación basados en caracteres. El segundo en- foque parte de la creación de modelos de lenguaje que predicen la probabilidad del siguiente carácter en una secuencia, que en conjunto con una técnica de cálculo de umbrales para las probabilidades, clasifican los logs para detectar ataques. Estos enfoques fueron trabajados con redes neuronales de tipo LSTM, comunes en el procesamiento de secuencias, así también como con redes neuronales Trans- former. Las redes Transformer han tenido muy buenos resultados en sistemas de traducción de máquina y problemas similares en cuanto a procesamiento de lenguaje natural, pero no ha sido explorado su uso en detección de ataques en base a logs. Para presentar las comparaciones de enfoques y redes neuronales, se realizó un análisis del estado del arte, de los enfoques a aplicar y se realizaron múlti- ples experimentos. Estos experimentos implicaron el desarrollo de códigos para el análisis, transformación y preparación de los data sets, así como el entrenamiento y evaluación de los modelos y clasificaciones. Finalmente se plantean conclusiones sobre el uso de cada enfoque y red neu- ronal, así como el planteo de futuros trabajos que puedan mejorar y responder cuestiones encontradas en el proyecto.Agencia Nacional de Investigación e InnovaciónengUniversidad ORT UruguayNeural NetworkDeep LearningTransformersLSTMAttack DetectionCiencias Naturales y ExactasCiencias de la Computación e InformaciónComparison of LSTM and Transformer Neural Network on multiple approaches for weblogs attack detectionTesis de maestríaAceptadoinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/masterThesis//Ciencias Naturales y Exactas/Ciencias de la Computación e Informaciónreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónMartínez Varsi, NicolásYovine, SergioLICENSElicense.txtlicense.txttext/plain; charset=utf-84944https://redi.anii.org.uy/jspui/bitstream/20.500.12381/2363/2/license.txt3c9d86d36485746409b4281a0893d729MD52ORIGINALNicolas_Martinez_Varsi_Tesis_master_2022.pdfNicolas_Martinez_Varsi_Tesis_master_2022.pdfapplication/pdf2064811https://redi.anii.org.uy/jspui/bitstream/20.500.12381/2363/1/Nicolas_Martinez_Varsi_Tesis_master_2022.pdf259e14cd5b8e0336f3ed3e8e4378de65MD5120.500.12381/23632022-11-29 11:55:38.78oai:redi.anii.org.uy:20.500.12381/2363PHA+PGI+QUNVRVJETyBERSBDRVNJT04gTk8gRVhDTFVTSVZBIERFIERFUkVDSE9TPC9iPjwvcD4KCjxwPkFjZXB0YW5kbyBsYSBjZXNpw7NuIGRlIGRlcmVjaG9zIGVsIHVzdWFyaW8gREVDTEFSQSBxdWUgb3N0ZW50YSBsYSBjb25kaWNpw7NuIGRlIGF1dG9yIGVuIGVsIHNlbnRpZG8gcXVlIG90b3JnYSBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSBzb2JyZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+Cgo8cD5Db24gZWwgZmluIGRlIGRhciBsYSBtw6F4aW1hIGRpZnVzacOzbiBhIGxhIG9icmEgYSB0cmF2w6lzIGRlbCByZXBvc2l0b3JpbyBkZSBhY2Nlc28gYWJpZXJ0byBSRURJIChodHRwczovL3JlZGkuYW5paS5vcmcudXkpLCBlbCBBVVRPUiBDRURFIGEgPGI+QWdlbmNpYSBOYWNpb25hbCBkZSBJbnZlc3RpZ2FjacOzbiBlIElubm92YWNpw7NuPC9iPiAoPGI+QU5JSTwvYj4pLCBkZSBmb3JtYSBncmF0dWl0YSB5IE5PIEVYQ0xVU0lWQSwgY29uIGNhcsOhY3RlciBpcnJldm9jYWJsZSBlIGlsaW1pdGFkbyBlbiBlbCB0aWVtcG8geSBjb24gw6FtYml0byBtdW5kaWFsLCBsb3MgZGVyZWNob3MgZGUgcmVwcm9kdWNjacOzbiwgZGUgZGlzdHJpYnVjacOzbiwgZGUgY29tdW5pY2FjacOzbiBww7pibGljYSwgaW5jbHVpZG8gZWwgZGVyZWNobyBkZSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZWxlY3Ryw7NuaWNhLCBwYXJhIHF1ZSBwdWVkYSBzZXIgdXRpbGl6YWRhIGRlIGZvcm1hIGxpYnJlIHkgZ3JhdHVpdGEgcG9yIHRvZG9zIGxvcyBxdWUgbG8gZGVzZWVuLjwvcD4KCjxwPkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOjwvcD4KCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgPGI+QU5JSTwvYj46PC9wPgoKPHVsPgo8bGkgdmFsdWU9KGEpPlRyYW5zZm9ybWFyIGxhIG9icmEgZW4gbGEgbWVkaWRhIGVuIHF1ZSBzZWEgbmVjZXNhcmlvIHBhcmEgYWRhcHRhcmxhIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hIHN1c2NlcHRpYmxlIGRlIGluY29ycG9yYWNpw7NuIGEgSW50ZXJuZXQ7IHJlYWxpemFyIGxhcyBhZGFwdGFjaW9uZXMgbmVjZXNhcmlhcyBwYXJhIGhhY2VyIHBvc2libGUgc3UgYWNjZXNvIHkgdmlzdWFsaXphY2nDs24gcGVybWFuZW50ZSwgYcO6biBwb3IgcGFydGUgZGUgcGVyc29uYXMgY29uIGRpc2NhcGFjaWRhZCwgcmVhbGl6YXIgbGFzIG1pZ3JhY2lvbmVzIGRlIGZvcm1hdG9zIHBhcmEgYXNlZ3VyYXIgbGEgcHJlc2VydmFjacOzbiBhIGxhcmdvIHBsYXpvLCBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24gbyBkZSBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIEVuIG5pbmfDum4gY2FzbyBkaWNoYXMgbW9kaWZpY2FjaW9uZXMgaW1wbGljYXLDoW4gYWR1bHRlcmFjaW9uZXMgZW4gZWwgY29udGVuaWRvIGRlIGxhIG9icmEuPC9saT4gCjxsaSB2YWx1ZT0oYik+UmVwcm9kdWNpciBsYSBvYnJhIGVuIHVuIG1lZGlvIGRpZ2l0YWwgcGFyYSBzdSBpbmNvcnBvcmFjacOzbiBhIHNpc3RlbWFzIGRlIGLDunNxdWVkYSB5IHJlY3VwZXJhY2nDs24sIGluY2x1eWVuZG8gZWwgZGVyZWNobyBhIHJlcHJvZHVjaXIgeSBhbG1hY2VuYXJsYSBlbiBzZXJ2aWRvcmVzIHUgb3Ryb3MgbWVkaW9zIGRpZ2l0YWxlcyBhIGxvcyBlZmVjdG9zIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uPC9saT4gCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gCjxsaSB2YWx1ZT0oZCk+UmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0Lgo8L3VsPgoKPHA+RW4gdmlydHVkIGRlbCBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZvIGRlIGxhIGNlc2nDs24sIGVsIEF1dG9yIGNvbnNlcnZhIHRvZG9zIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhLCB5IHBvZHLDoSBwb25lcmxhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBlc3RhIHkgZW4gcG9zdGVyaW9yZXMgdmVyc2lvbmVzLCBhIHRyYXbDqXMgZGUgbG9zIG1lZGlvcyBxdWUgZXN0aW1lIG9wb3J0dW5vcy48L3A+Cgo8cD5FbCBBdXRvciBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhbiBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3RybyB5IGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhIG9icmEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MsIG5pIGVzIGRpc2NyaW1pbmF0b3Jpby4gPGI+QU5JSTwvYj4gZXN0YXLDoSBleGVudGEgZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+Cgo8cD5MYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS48L3A+Cgo8cD5FbCBBdXRvciwgY29tbyBnYXJhbnRlIGRlIGxhIGF1dG9yw61hIGRlIGxhIG9icmEgeSBlbiByZWxhY2nDs24gYSBsYSBtaXNtYSwgZGVjbGFyYSBxdWUgPGI+QU5JSTwvYj4gc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMYSA8Yj5BTklJPC9iPiBlc3RhcsOhIGV4ZW50YSBkZSBlamVyY2l0YXIgYWNjaW9uZXMgbGVnYWxlcyBlbiBub21icmUgZGVsIEF1dG9yIGVuIGVsIHN1cHVlc3RvIGRlIGluZnJhY2Npb25lcyBhIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZXJpdmFkb3MgZGVsIGRlcMOzc2l0byB5IGFyY2hpdm8gZGUgbGEgb2JyYS48L3A+Cgo8cD48Yj5BTklJPC9iPiBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4KCjxwPkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyA8Yj5BTklJPC9iPiBwb2Ryw6EgcmV0aXJhciBvIGludmlzaWJpbGl6YXIgbGEgb2JyYSBkZSBSRURJLCBwcmV2aWEgbm90aWZpY2FjacOzbiBhbCBBdXRvciwgZW4gc3VwdWVzdG9zIHN1ZmljaWVudGVtZW50ZSBqdXN0aWZpY2Fkb3MsIG8gZW4gY2FzbyBkZSByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLjwvcD4KGobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212022-11-29T14:55:38REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle Comparison of LSTM and Transformer Neural Network on multiple approaches for weblogs attack detection
Martínez Varsi, Nicolás
Neural Network
Deep Learning
Transformers
LSTM
Attack Detection
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
status_str acceptedVersion
title Comparison of LSTM and Transformer Neural Network on multiple approaches for weblogs attack detection
title_full Comparison of LSTM and Transformer Neural Network on multiple approaches for weblogs attack detection
title_fullStr Comparison of LSTM and Transformer Neural Network on multiple approaches for weblogs attack detection
title_full_unstemmed Comparison of LSTM and Transformer Neural Network on multiple approaches for weblogs attack detection
title_short Comparison of LSTM and Transformer Neural Network on multiple approaches for weblogs attack detection
title_sort Comparison of LSTM and Transformer Neural Network on multiple approaches for weblogs attack detection
topic Neural Network
Deep Learning
Transformers
LSTM
Attack Detection
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
url https://hdl.handle.net/20.500.12381/2363