¿Cómo compartir datos de manera efectiva y privada?

Yovine, Sergio - Mayr, Franz

Resumen:

Este trabajo analiza la problemática general de dar garantías de privacidad manteniendo niveles aceptables de utilidad predictiva cuando se comparten datos sensibles. En particular, se considera la situación en la cual varias organizaciones (públicas y/o privadas) comparten entre ellas y/o con terceros modelos entrenados con datos privados de cada una de ellas.


Detalles Bibliográficos
2022
Agencia Nacional de Investigación e Innovación
Differential Privacy
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Español
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/2364
https://www.aiu.org.uy/_files/ugd/989f95_16f572703c894f24b799df036aa35ad3.pdf
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
_version_ 1814959263919898624
author Yovine, Sergio
author2 Mayr, Franz
author2_role author
author_facet Yovine, Sergio
Mayr, Franz
author_role author
bitstream.checksum.fl_str_mv 3c9d86d36485746409b4281a0893d729
342f8ee5517d543fe255e07e834d496b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/2364/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/2364/1/AIU_Revista%20N94_Yovine_Mayr.pdf
collection REDI
dc.creator.none.fl_str_mv Yovine, Sergio
Mayr, Franz
dc.date.accessioned.none.fl_str_mv 2022-11-29T14:58:33Z
dc.date.available.none.fl_str_mv 2022-11-29T14:58:33Z
dc.date.issued.none.fl_str_mv 2022-08
dc.description.abstract.none.fl_txt_mv Este trabajo analiza la problemática general de dar garantías de privacidad manteniendo niveles aceptables de utilidad predictiva cuando se comparten datos sensibles. En particular, se considera la situación en la cual varias organizaciones (públicas y/o privadas) comparten entre ellas y/o con terceros modelos entrenados con datos privados de cada una de ellas.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
dc.identifier.anii.es.fl_str_mv FMV_1_2019_1_155913
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/2364
dc.identifier.url.none.fl_str_mv https://www.aiu.org.uy/_files/ugd/989f95_16f572703c894f24b799df036aa35ad3.pdf
dc.language.iso.none.fl_str_mv spa
dc.publisher.es.fl_str_mv Asociación de Ingenieros del Uruguay
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento 4.0 Internacional. (CC BY)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.es.fl_str_mv Ingeniería. Nro. 94
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.none.fl_str_mv Ciencias Naturales y Exactas
Ciencias de la Computación e Información
dc.subject.es.fl_str_mv Differential Privacy
dc.title.none.fl_str_mv ¿Cómo compartir datos de manera efectiva y privada?
dc.type.es.fl_str_mv Artículo de divulgación
dc.type.none.fl_str_mv info:eu-repo/semantics/contributionToPeriodical
dc.type.version.es.fl_str_mv Publicado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Este trabajo analiza la problemática general de dar garantías de privacidad manteniendo niveles aceptables de utilidad predictiva cuando se comparten datos sensibles. En particular, se considera la situación en la cual varias organizaciones (públicas y/o privadas) comparten entre ellas y/o con terceros modelos entrenados con datos privados de cada una de ellas.
eu_rights_str_mv openAccess
format contributionToPeriodical
id REDI_e1474e2dfe6f4fbd4d3e3b58981649c4
identifier_str_mv FMV_1_2019_1_155913
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language spa
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/2364
publishDate 2022
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento 4.0 Internacional. (CC BY)
Acceso abierto
spelling Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2022-11-29T14:58:33Z2022-11-29T14:58:33Z2022-08https://hdl.handle.net/20.500.12381/2364FMV_1_2019_1_155913https://www.aiu.org.uy/_files/ugd/989f95_16f572703c894f24b799df036aa35ad3.pdfEste trabajo analiza la problemática general de dar garantías de privacidad manteniendo niveles aceptables de utilidad predictiva cuando se comparten datos sensibles. En particular, se considera la situación en la cual varias organizaciones (públicas y/o privadas) comparten entre ellas y/o con terceros modelos entrenados con datos privados de cada una de ellas.Agencia Nacional de Investigación e InnovaciónspaAsociación de Ingenieros del UruguayIngeniería. Nro. 94reponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónDifferential PrivacyCiencias Naturales y ExactasCiencias de la Computación e Información¿Cómo compartir datos de manera efectiva y privada?Artículo de divulgaciónPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/contributionToPeriodicalUniversidad ORT Uruguay//Ciencias Naturales y Exactas/Ciencias de la Computación e InformaciónYovine, SergioMayr, FranzLICENSElicense.txtlicense.txttext/plain; charset=utf-84944https://redi.anii.org.uy/jspui/bitstream/20.500.12381/2364/2/license.txt3c9d86d36485746409b4281a0893d729MD52ORIGINALAIU_Revista N94_Yovine_Mayr.pdfAIU_Revista N94_Yovine_Mayr.pdfapplication/pdf1345980https://redi.anii.org.uy/jspui/bitstream/20.500.12381/2364/1/AIU_Revista%20N94_Yovine_Mayr.pdf342f8ee5517d543fe255e07e834d496bMD5120.500.12381/23642022-11-29 11:58:34.478oai:redi.anii.org.uy:20.500.12381/2364PHA+PGI+QUNVRVJETyBERSBDRVNJT04gTk8gRVhDTFVTSVZBIERFIERFUkVDSE9TPC9iPjwvcD4KCjxwPkFjZXB0YW5kbyBsYSBjZXNpw7NuIGRlIGRlcmVjaG9zIGVsIHVzdWFyaW8gREVDTEFSQSBxdWUgb3N0ZW50YSBsYSBjb25kaWNpw7NuIGRlIGF1dG9yIGVuIGVsIHNlbnRpZG8gcXVlIG90b3JnYSBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSBzb2JyZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+Cgo8cD5Db24gZWwgZmluIGRlIGRhciBsYSBtw6F4aW1hIGRpZnVzacOzbiBhIGxhIG9icmEgYSB0cmF2w6lzIGRlbCByZXBvc2l0b3JpbyBkZSBhY2Nlc28gYWJpZXJ0byBSRURJIChodHRwczovL3JlZGkuYW5paS5vcmcudXkpLCBlbCBBVVRPUiBDRURFIGEgPGI+QWdlbmNpYSBOYWNpb25hbCBkZSBJbnZlc3RpZ2FjacOzbiBlIElubm92YWNpw7NuPC9iPiAoPGI+QU5JSTwvYj4pLCBkZSBmb3JtYSBncmF0dWl0YSB5IE5PIEVYQ0xVU0lWQSwgY29uIGNhcsOhY3RlciBpcnJldm9jYWJsZSBlIGlsaW1pdGFkbyBlbiBlbCB0aWVtcG8geSBjb24gw6FtYml0byBtdW5kaWFsLCBsb3MgZGVyZWNob3MgZGUgcmVwcm9kdWNjacOzbiwgZGUgZGlzdHJpYnVjacOzbiwgZGUgY29tdW5pY2FjacOzbiBww7pibGljYSwgaW5jbHVpZG8gZWwgZGVyZWNobyBkZSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZWxlY3Ryw7NuaWNhLCBwYXJhIHF1ZSBwdWVkYSBzZXIgdXRpbGl6YWRhIGRlIGZvcm1hIGxpYnJlIHkgZ3JhdHVpdGEgcG9yIHRvZG9zIGxvcyBxdWUgbG8gZGVzZWVuLjwvcD4KCjxwPkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOjwvcD4KCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgPGI+QU5JSTwvYj46PC9wPgoKPHVsPgo8bGkgdmFsdWU9KGEpPlRyYW5zZm9ybWFyIGxhIG9icmEgZW4gbGEgbWVkaWRhIGVuIHF1ZSBzZWEgbmVjZXNhcmlvIHBhcmEgYWRhcHRhcmxhIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hIHN1c2NlcHRpYmxlIGRlIGluY29ycG9yYWNpw7NuIGEgSW50ZXJuZXQ7IHJlYWxpemFyIGxhcyBhZGFwdGFjaW9uZXMgbmVjZXNhcmlhcyBwYXJhIGhhY2VyIHBvc2libGUgc3UgYWNjZXNvIHkgdmlzdWFsaXphY2nDs24gcGVybWFuZW50ZSwgYcO6biBwb3IgcGFydGUgZGUgcGVyc29uYXMgY29uIGRpc2NhcGFjaWRhZCwgcmVhbGl6YXIgbGFzIG1pZ3JhY2lvbmVzIGRlIGZvcm1hdG9zIHBhcmEgYXNlZ3VyYXIgbGEgcHJlc2VydmFjacOzbiBhIGxhcmdvIHBsYXpvLCBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24gbyBkZSBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIEVuIG5pbmfDum4gY2FzbyBkaWNoYXMgbW9kaWZpY2FjaW9uZXMgaW1wbGljYXLDoW4gYWR1bHRlcmFjaW9uZXMgZW4gZWwgY29udGVuaWRvIGRlIGxhIG9icmEuPC9saT4gCjxsaSB2YWx1ZT0oYik+UmVwcm9kdWNpciBsYSBvYnJhIGVuIHVuIG1lZGlvIGRpZ2l0YWwgcGFyYSBzdSBpbmNvcnBvcmFjacOzbiBhIHNpc3RlbWFzIGRlIGLDunNxdWVkYSB5IHJlY3VwZXJhY2nDs24sIGluY2x1eWVuZG8gZWwgZGVyZWNobyBhIHJlcHJvZHVjaXIgeSBhbG1hY2VuYXJsYSBlbiBzZXJ2aWRvcmVzIHUgb3Ryb3MgbWVkaW9zIGRpZ2l0YWxlcyBhIGxvcyBlZmVjdG9zIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uPC9saT4gCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gCjxsaSB2YWx1ZT0oZCk+UmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0Lgo8L3VsPgoKPHA+RW4gdmlydHVkIGRlbCBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZvIGRlIGxhIGNlc2nDs24sIGVsIEF1dG9yIGNvbnNlcnZhIHRvZG9zIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhLCB5IHBvZHLDoSBwb25lcmxhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBlc3RhIHkgZW4gcG9zdGVyaW9yZXMgdmVyc2lvbmVzLCBhIHRyYXbDqXMgZGUgbG9zIG1lZGlvcyBxdWUgZXN0aW1lIG9wb3J0dW5vcy48L3A+Cgo8cD5FbCBBdXRvciBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhbiBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3RybyB5IGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhIG9icmEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MsIG5pIGVzIGRpc2NyaW1pbmF0b3Jpby4gPGI+QU5JSTwvYj4gZXN0YXLDoSBleGVudGEgZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+Cgo8cD5MYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS48L3A+Cgo8cD5FbCBBdXRvciwgY29tbyBnYXJhbnRlIGRlIGxhIGF1dG9yw61hIGRlIGxhIG9icmEgeSBlbiByZWxhY2nDs24gYSBsYSBtaXNtYSwgZGVjbGFyYSBxdWUgPGI+QU5JSTwvYj4gc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMYSA8Yj5BTklJPC9iPiBlc3RhcsOhIGV4ZW50YSBkZSBlamVyY2l0YXIgYWNjaW9uZXMgbGVnYWxlcyBlbiBub21icmUgZGVsIEF1dG9yIGVuIGVsIHN1cHVlc3RvIGRlIGluZnJhY2Npb25lcyBhIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZXJpdmFkb3MgZGVsIGRlcMOzc2l0byB5IGFyY2hpdm8gZGUgbGEgb2JyYS48L3A+Cgo8cD48Yj5BTklJPC9iPiBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4KCjxwPkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyA8Yj5BTklJPC9iPiBwb2Ryw6EgcmV0aXJhciBvIGludmlzaWJpbGl6YXIgbGEgb2JyYSBkZSBSRURJLCBwcmV2aWEgbm90aWZpY2FjacOzbiBhbCBBdXRvciwgZW4gc3VwdWVzdG9zIHN1ZmljaWVudGVtZW50ZSBqdXN0aWZpY2Fkb3MsIG8gZW4gY2FzbyBkZSByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLjwvcD4KGobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212022-11-29T14:58:34REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle ¿Cómo compartir datos de manera efectiva y privada?
Yovine, Sergio
Differential Privacy
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
status_str publishedVersion
title ¿Cómo compartir datos de manera efectiva y privada?
title_full ¿Cómo compartir datos de manera efectiva y privada?
title_fullStr ¿Cómo compartir datos de manera efectiva y privada?
title_full_unstemmed ¿Cómo compartir datos de manera efectiva y privada?
title_short ¿Cómo compartir datos de manera efectiva y privada?
title_sort ¿Cómo compartir datos de manera efectiva y privada?
topic Differential Privacy
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
url https://hdl.handle.net/20.500.12381/2364
https://www.aiu.org.uy/_files/ugd/989f95_16f572703c894f24b799df036aa35ad3.pdf