On the design of ultra low voltage CMOS oscillators

Siniscalchi, Mariana

Supervisor(es): Galup, Carlos - Silveira, Fernando

Resumen:

Los nodos sensores inalámbricos tienen fuertes requerimientos de bajo consumo de manera de operar con baterías pequeñas o algún mecanismo de cosecha de energía, o ambos. En muchos casos, la cosecha de energía térmica o electroquímica provee tensiones muy bajas del orden de 100 mV o incluso menos. Los sistemas de internet de las cosas incluyen un módulo de reloj que debe estar siempre encendido a efectos de contar el tiempo. Los osciladores a cristal son probadamente útiles como relojes de bajo consumo, y en este contexto la reducción de la tensión es una estrategia conveniente. Por lo tanto, presentamos osciladores a cristal de 32 kHz operando con sólo 60 mV de tensión de alimentación. Dos implementaciones, basadas en el circuito Schmitt trigger para dos cristales diferentes, se diseñan y caracterizan experimentalmente. Estos osciladores a cristal están basados en la aplicación del Schmitt trigger como amplificador. Se provee una guía para el diseño de este bloque para funcionar como el amplificador de un oscilador a cristal. Adicionalmente se propone un modelo dinámico del Schmitt trigger y los resultados del modelo son comparados con resultados de simulación. Los amplificadores son caracterizados experimentalmente, proveyendo una ganancia de 2.48 V/V con 60 mV de tensión de alimentación. Tal como se pretende en la etapa de diseño, para tensiones mayores a 100 mV aparece el fenómeno de histéresis y el Schmitt trigger comienza a operar como un comparador. Los Schmitt trigger para operar como amplificadores de los osciladores a cristal son diseñados en un proceso CMOS de 130 nm y ocupan un área de 45 um x 74 um y 78 um x 83 um, respectivamente. El consumo de potencia de sendos osciladores es 2.26 nW y 15 nW y la estabilidad en temperatura obtenida es de 62 ppm (25-62°C) y 50 ppm (5-62°C), respectivamente. Se midieron la dependencia del consumo de corriente con respecto a la tensión de alimentación, la frequencia de oscilación, el tiempo de arranque y la amplitud de oscilación. La desviación de Allan es 30 ppb en ambos osciladores. Por otra parte, un oscilador LC controlado por voltaje es diseñado en un proceso CMOS de silicio sobre aislante en deplexión total de 28 nm, para aplicaciones de radiofrecuencia. Se estudia la posibilidad de utilizar en este caso el mismo modelo utilizado para el diseño del Schmitt trigger. Dicho modelo es válido en todas las regiones de inversión y está desarrollado para transistores de tipo sustrato y de canal largo. La arquitectura de transistores nMOS entrelazados es la utilizada para este oscilador. Se estudia el límite teórico para la mínima tensión de alimentación. Los transistores son dimensionados de manera óptima para obtener el mínimo consumo de potencia posible, utilizando un enfoque de baja tensión y el desempeño del oscilador se obtuvo mediante simulaciones.


Detalles Bibliográficos
2020
Agencia Nacional de Investigación e Innovación
Comisión Académica de Posgrado. Universidad de la República
Comisión Sectorial de Investigación Científica. Universidad de la República
Oscilador a cristal
Ultra baja tensión
Ultra baja potencia
Inversión moderada y débil
Ingeniería y Tecnología
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
Inglés
Agencia Nacional de Investigación e Innovación
REDI
http://hdl.handle.net/20.500.12381/237
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
_version_ 1814959264427409408
author Siniscalchi, Mariana
author_facet Siniscalchi, Mariana
author_role author
bitstream.checksum.fl_str_mv 2d97768b1a25a7df5a347bb58fd2d77f
b4f92fdde65d5f3d146f9b7ab33947db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/237/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/237/1/ULV_CMOS_OSC_FINAL.pdf
collection REDI
dc.creator.advisor.none.fl_str_mv Galup, Carlos
Silveira, Fernando
dc.creator.none.fl_str_mv Siniscalchi, Mariana
dc.date.accessioned.none.fl_str_mv 2020-05-14T14:02:37Z
dc.date.available.none.fl_str_mv 2020-05-14T14:02:37Z
dc.date.issued.none.fl_str_mv 2020-04-28
dc.description.abstract.none.fl_txt_mv Los nodos sensores inalámbricos tienen fuertes requerimientos de bajo consumo de manera de operar con baterías pequeñas o algún mecanismo de cosecha de energía, o ambos. En muchos casos, la cosecha de energía térmica o electroquímica provee tensiones muy bajas del orden de 100 mV o incluso menos. Los sistemas de internet de las cosas incluyen un módulo de reloj que debe estar siempre encendido a efectos de contar el tiempo. Los osciladores a cristal son probadamente útiles como relojes de bajo consumo, y en este contexto la reducción de la tensión es una estrategia conveniente. Por lo tanto, presentamos osciladores a cristal de 32 kHz operando con sólo 60 mV de tensión de alimentación. Dos implementaciones, basadas en el circuito Schmitt trigger para dos cristales diferentes, se diseñan y caracterizan experimentalmente. Estos osciladores a cristal están basados en la aplicación del Schmitt trigger como amplificador. Se provee una guía para el diseño de este bloque para funcionar como el amplificador de un oscilador a cristal. Adicionalmente se propone un modelo dinámico del Schmitt trigger y los resultados del modelo son comparados con resultados de simulación. Los amplificadores son caracterizados experimentalmente, proveyendo una ganancia de 2.48 V/V con 60 mV de tensión de alimentación. Tal como se pretende en la etapa de diseño, para tensiones mayores a 100 mV aparece el fenómeno de histéresis y el Schmitt trigger comienza a operar como un comparador. Los Schmitt trigger para operar como amplificadores de los osciladores a cristal son diseñados en un proceso CMOS de 130 nm y ocupan un área de 45 um x 74 um y 78 um x 83 um, respectivamente. El consumo de potencia de sendos osciladores es 2.26 nW y 15 nW y la estabilidad en temperatura obtenida es de 62 ppm (25-62°C) y 50 ppm (5-62°C), respectivamente. Se midieron la dependencia del consumo de corriente con respecto a la tensión de alimentación, la frequencia de oscilación, el tiempo de arranque y la amplitud de oscilación. La desviación de Allan es 30 ppb en ambos osciladores. Por otra parte, un oscilador LC controlado por voltaje es diseñado en un proceso CMOS de silicio sobre aislante en deplexión total de 28 nm, para aplicaciones de radiofrecuencia. Se estudia la posibilidad de utilizar en este caso el mismo modelo utilizado para el diseño del Schmitt trigger. Dicho modelo es válido en todas las regiones de inversión y está desarrollado para transistores de tipo sustrato y de canal largo. La arquitectura de transistores nMOS entrelazados es la utilizada para este oscilador. Se estudia el límite teórico para la mínima tensión de alimentación. Los transistores son dimensionados de manera óptima para obtener el mínimo consumo de potencia posible, utilizando un enfoque de baja tensión y el desempeño del oscilador se obtuvo mediante simulaciones.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
Comisión Académica de Posgrado. Universidad de la República
Comisión Sectorial de Investigación Científica. Universidad de la República
dc.identifier.anii.es.fl_str_mv POS_NAC_2015_1_109743
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12381/237
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv Universidad de la República
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento 4.0 Internacional. (CC BY)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.es.fl_str_mv Ingeniería y Tecnología
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.es.fl_str_mv Oscilador a cristal
Ultra baja tensión
Ultra baja potencia
Inversión moderada y débil
dc.title.none.fl_str_mv On the design of ultra low voltage CMOS oscillators
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.es.fl_str_mv Aceptado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Los nodos sensores inalámbricos tienen fuertes requerimientos de bajo consumo de manera de operar con baterías pequeñas o algún mecanismo de cosecha de energía, o ambos. En muchos casos, la cosecha de energía térmica o electroquímica provee tensiones muy bajas del orden de 100 mV o incluso menos. Los sistemas de internet de las cosas incluyen un módulo de reloj que debe estar siempre encendido a efectos de contar el tiempo. Los osciladores a cristal son probadamente útiles como relojes de bajo consumo, y en este contexto la reducción de la tensión es una estrategia conveniente. Por lo tanto, presentamos osciladores a cristal de 32 kHz operando con sólo 60 mV de tensión de alimentación. Dos implementaciones, basadas en el circuito Schmitt trigger para dos cristales diferentes, se diseñan y caracterizan experimentalmente. Estos osciladores a cristal están basados en la aplicación del Schmitt trigger como amplificador. Se provee una guía para el diseño de este bloque para funcionar como el amplificador de un oscilador a cristal. Adicionalmente se propone un modelo dinámico del Schmitt trigger y los resultados del modelo son comparados con resultados de simulación. Los amplificadores son caracterizados experimentalmente, proveyendo una ganancia de 2.48 V/V con 60 mV de tensión de alimentación. Tal como se pretende en la etapa de diseño, para tensiones mayores a 100 mV aparece el fenómeno de histéresis y el Schmitt trigger comienza a operar como un comparador. Los Schmitt trigger para operar como amplificadores de los osciladores a cristal son diseñados en un proceso CMOS de 130 nm y ocupan un área de 45 um x 74 um y 78 um x 83 um, respectivamente. El consumo de potencia de sendos osciladores es 2.26 nW y 15 nW y la estabilidad en temperatura obtenida es de 62 ppm (25-62°C) y 50 ppm (5-62°C), respectivamente. Se midieron la dependencia del consumo de corriente con respecto a la tensión de alimentación, la frequencia de oscilación, el tiempo de arranque y la amplitud de oscilación. La desviación de Allan es 30 ppb en ambos osciladores. Por otra parte, un oscilador LC controlado por voltaje es diseñado en un proceso CMOS de silicio sobre aislante en deplexión total de 28 nm, para aplicaciones de radiofrecuencia. Se estudia la posibilidad de utilizar en este caso el mismo modelo utilizado para el diseño del Schmitt trigger. Dicho modelo es válido en todas las regiones de inversión y está desarrollado para transistores de tipo sustrato y de canal largo. La arquitectura de transistores nMOS entrelazados es la utilizada para este oscilador. Se estudia el límite teórico para la mínima tensión de alimentación. Los transistores son dimensionados de manera óptima para obtener el mínimo consumo de potencia posible, utilizando un enfoque de baja tensión y el desempeño del oscilador se obtuvo mediante simulaciones.
eu_rights_str_mv openAccess
format doctoralThesis
id REDI_da3deebb858c684b6e9c46b7f9e30b20
identifier_str_mv POS_NAC_2015_1_109743
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language eng
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/237
publishDate 2020
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento 4.0 Internacional. (CC BY)
Acceso abierto
spelling Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2020-05-14T14:02:37Z2020-05-14T14:02:37Z2020-04-28http://hdl.handle.net/20.500.12381/237POS_NAC_2015_1_109743Los nodos sensores inalámbricos tienen fuertes requerimientos de bajo consumo de manera de operar con baterías pequeñas o algún mecanismo de cosecha de energía, o ambos. En muchos casos, la cosecha de energía térmica o electroquímica provee tensiones muy bajas del orden de 100 mV o incluso menos. Los sistemas de internet de las cosas incluyen un módulo de reloj que debe estar siempre encendido a efectos de contar el tiempo. Los osciladores a cristal son probadamente útiles como relojes de bajo consumo, y en este contexto la reducción de la tensión es una estrategia conveniente. Por lo tanto, presentamos osciladores a cristal de 32 kHz operando con sólo 60 mV de tensión de alimentación. Dos implementaciones, basadas en el circuito Schmitt trigger para dos cristales diferentes, se diseñan y caracterizan experimentalmente. Estos osciladores a cristal están basados en la aplicación del Schmitt trigger como amplificador. Se provee una guía para el diseño de este bloque para funcionar como el amplificador de un oscilador a cristal. Adicionalmente se propone un modelo dinámico del Schmitt trigger y los resultados del modelo son comparados con resultados de simulación. Los amplificadores son caracterizados experimentalmente, proveyendo una ganancia de 2.48 V/V con 60 mV de tensión de alimentación. Tal como se pretende en la etapa de diseño, para tensiones mayores a 100 mV aparece el fenómeno de histéresis y el Schmitt trigger comienza a operar como un comparador. Los Schmitt trigger para operar como amplificadores de los osciladores a cristal son diseñados en un proceso CMOS de 130 nm y ocupan un área de 45 um x 74 um y 78 um x 83 um, respectivamente. El consumo de potencia de sendos osciladores es 2.26 nW y 15 nW y la estabilidad en temperatura obtenida es de 62 ppm (25-62°C) y 50 ppm (5-62°C), respectivamente. Se midieron la dependencia del consumo de corriente con respecto a la tensión de alimentación, la frequencia de oscilación, el tiempo de arranque y la amplitud de oscilación. La desviación de Allan es 30 ppb en ambos osciladores. Por otra parte, un oscilador LC controlado por voltaje es diseñado en un proceso CMOS de silicio sobre aislante en deplexión total de 28 nm, para aplicaciones de radiofrecuencia. Se estudia la posibilidad de utilizar en este caso el mismo modelo utilizado para el diseño del Schmitt trigger. Dicho modelo es válido en todas las regiones de inversión y está desarrollado para transistores de tipo sustrato y de canal largo. La arquitectura de transistores nMOS entrelazados es la utilizada para este oscilador. Se estudia el límite teórico para la mínima tensión de alimentación. Los transistores son dimensionados de manera óptima para obtener el mínimo consumo de potencia posible, utilizando un enfoque de baja tensión y el desempeño del oscilador se obtuvo mediante simulaciones.Agencia Nacional de Investigación e InnovaciónComisión Académica de Posgrado. Universidad de la RepúblicaComisión Sectorial de Investigación Científica. Universidad de la RepúblicaengUniversidad de la RepúblicaOscilador a cristalUltra baja tensiónUltra baja potenciaInversión moderada y débilIngeniería y TecnologíaIngeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la InformaciónOn the design of ultra low voltage CMOS oscillatorsTesis de doctoradoAceptadoinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/doctoralThesisreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónSiniscalchi, MarianaGalup, CarlosSilveira, FernandoLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/237/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALULV_CMOS_OSC_FINAL.pdfULV_CMOS_OSC_FINAL.pdfapplication/pdf18253389https://redi.anii.org.uy/jspui/bitstream/20.500.12381/237/1/ULV_CMOS_OSC_FINAL.pdfb4f92fdde65d5f3d146f9b7ab33947dbMD5120.500.12381/2372020-09-18 12:22:19.458oai:redi.anii.org.uy:20.500.12381/237PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212020-09-18T15:22:19REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle On the design of ultra low voltage CMOS oscillators
Siniscalchi, Mariana
Oscilador a cristal
Ultra baja tensión
Ultra baja potencia
Inversión moderada y débil
Ingeniería y Tecnología
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
status_str acceptedVersion
title On the design of ultra low voltage CMOS oscillators
title_full On the design of ultra low voltage CMOS oscillators
title_fullStr On the design of ultra low voltage CMOS oscillators
title_full_unstemmed On the design of ultra low voltage CMOS oscillators
title_short On the design of ultra low voltage CMOS oscillators
title_sort On the design of ultra low voltage CMOS oscillators
topic Oscilador a cristal
Ultra baja tensión
Ultra baja potencia
Inversión moderada y débil
Ingeniería y Tecnología
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
url http://hdl.handle.net/20.500.12381/237