Una introducción acerca de la detección de la fibrilación auricular en una población de adultos mayores en Uruguay

Scavino, Marco - Estragó, Virginia - Muñoz, Matı́as - Castrillejo, Andrés - Álvarez-Vaz, Ramón

Resumen:

En este trabajo desarrollamos los procedimientos basados en algoritmos de aprendizaje automático diseñados para la identificación de una patologı́a cardı́aca, la fibrilación auricular (FA), a partir de la señal electrocardiográfica (ECG) de una derivación y de corta duración registrada con un dispositivo de tecno- logı́a electrónica móvil (DTEM). El dispositivo móvil tiene un método interno de clasificación que permite un análisis instantáneo del registro de ECG en ritmo normal, posible FA, o sin clasificar. Visto la importancia del diagnóstico temprano de patologı́as cardiovasculares tales como la FA, nuestro objetivo es mejorar la capacidad de clasificación del DTEM el cual, en la práctica, deja sin clasificar un conjunto relevante de registros de ECG. A tal efecto, utilizamos métodos de extracción de caracterı́sticas, basados en técnicas de filtrado y de análisis de la morfologı́a de la señal ECG, detectando, en particular, el llamado complejo QRS de cada latido del corazón y ubicando el respectivo pico R, siendo la medida del intervalo RR, que transcurre desde el inicio de una onda R hasta el inicio de la onda siguiente, un aspecto clı́nicamente relevante. Analizamos el desempeño predictivo de técnicas de clasificación supervisada, tales como árboles generados por partición recursiva y bosques aleatorios, empleadas en combinación con los métodos de extracción de caracterı́sticas de la señal ECG. Consideramos un banco de entrenamiento internacional, constituido para la competencia 2017 “PhysioNet/Computing in Cardiology (CinC)”, y un conjunto de prueba de registros de ECG de una población de adultos mayores de Uruguay, generado en 2019 en virtud de una colaboración entre la CHSCV y el Plan Ibirapitá. Los resultados obtenidos se interpretan a través de los diagnósticos disponibles de los ECG realizados por expertos cardiólogos clı́nicos.


Detalles Bibliográficos
2020
Agencia Nacional de Investigación e Innovación
Machine learning
Inteligencia artificial
Electrocardiograma
Fibrilación auricular
Clasificación supervisada
Ciencias Naturales y Exactas
Matemáticas
Estadística y Probabilidad
Ciencias Médicas y de la Salud
Medicina Clínica
Sistemas Cardíaco y Cardiovascular
Español
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/486
Acceso abierto
Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA)
_version_ 1814959262537875456
author Scavino, Marco
author2 Estragó, Virginia
Muñoz, Matı́as
Castrillejo, Andrés
Álvarez-Vaz, Ramón
author2_role author
author
author
author
author_facet Scavino, Marco
Estragó, Virginia
Muñoz, Matı́as
Castrillejo, Andrés
Álvarez-Vaz, Ramón
author_role author
bitstream.checksum.fl_str_mv 2d97768b1a25a7df5a347bb58fd2d77f
90f7e6294df9fec8a068fbfa28463041
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/486/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/486/1/Presentaci%c3%b3n%20Siesta%2014%2010%202020.pdf
collection REDI
dc.creator.none.fl_str_mv Scavino, Marco
Estragó, Virginia
Muñoz, Matı́as
Castrillejo, Andrés
Álvarez-Vaz, Ramón
dc.date.accessioned.none.fl_str_mv 2021-12-08T18:37:10Z
dc.date.available.none.fl_str_mv 2021-12-08T18:37:10Z
dc.date.issued.none.fl_str_mv 2020-10-07
dc.description.abstract.none.fl_txt_mv En este trabajo desarrollamos los procedimientos basados en algoritmos de aprendizaje automático diseñados para la identificación de una patologı́a cardı́aca, la fibrilación auricular (FA), a partir de la señal electrocardiográfica (ECG) de una derivación y de corta duración registrada con un dispositivo de tecno- logı́a electrónica móvil (DTEM). El dispositivo móvil tiene un método interno de clasificación que permite un análisis instantáneo del registro de ECG en ritmo normal, posible FA, o sin clasificar. Visto la importancia del diagnóstico temprano de patologı́as cardiovasculares tales como la FA, nuestro objetivo es mejorar la capacidad de clasificación del DTEM el cual, en la práctica, deja sin clasificar un conjunto relevante de registros de ECG. A tal efecto, utilizamos métodos de extracción de caracterı́sticas, basados en técnicas de filtrado y de análisis de la morfologı́a de la señal ECG, detectando, en particular, el llamado complejo QRS de cada latido del corazón y ubicando el respectivo pico R, siendo la medida del intervalo RR, que transcurre desde el inicio de una onda R hasta el inicio de la onda siguiente, un aspecto clı́nicamente relevante. Analizamos el desempeño predictivo de técnicas de clasificación supervisada, tales como árboles generados por partición recursiva y bosques aleatorios, empleadas en combinación con los métodos de extracción de caracterı́sticas de la señal ECG. Consideramos un banco de entrenamiento internacional, constituido para la competencia 2017 “PhysioNet/Computing in Cardiology (CinC)”, y un conjunto de prueba de registros de ECG de una población de adultos mayores de Uruguay, generado en 2019 en virtud de una colaboración entre la CHSCV y el Plan Ibirapitá. Los resultados obtenidos se interpretan a través de los diagnósticos disponibles de los ECG realizados por expertos cardiólogos clı́nicos.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
dc.identifier.anii.es.fl_str_mv FSDA_1_2018_1_154651
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/486
dc.language.iso.none.fl_str_mv spa
dc.relation.none.fl_str_mv https://hdl.handle.net/20.500.12381/487
dc.relation.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/487
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.es.fl_str_mv Seminario SIESTA. Instituto de Estadística, Facultad de Ciencias Económicas y de Administración, Universidad de la República, 7 de octubre de 2020
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.none.fl_str_mv Ciencias Naturales y Exactas
Matemáticas
Estadística y Probabilidad
Ciencias Médicas y de la Salud
Medicina Clínica
Sistemas Cardíaco y Cardiovascular
dc.subject.es.fl_str_mv Machine learning
Inteligencia artificial
Electrocardiograma
Fibrilación auricular
Clasificación supervisada
dc.title.none.fl_str_mv Una introducción acerca de la detección de la fibrilación auricular en una población de adultos mayores en Uruguay
dc.type.es.fl_str_mv Documento de conferencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.es.fl_str_mv Publicado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description En este trabajo desarrollamos los procedimientos basados en algoritmos de aprendizaje automático diseñados para la identificación de una patologı́a cardı́aca, la fibrilación auricular (FA), a partir de la señal electrocardiográfica (ECG) de una derivación y de corta duración registrada con un dispositivo de tecno- logı́a electrónica móvil (DTEM). El dispositivo móvil tiene un método interno de clasificación que permite un análisis instantáneo del registro de ECG en ritmo normal, posible FA, o sin clasificar. Visto la importancia del diagnóstico temprano de patologı́as cardiovasculares tales como la FA, nuestro objetivo es mejorar la capacidad de clasificación del DTEM el cual, en la práctica, deja sin clasificar un conjunto relevante de registros de ECG. A tal efecto, utilizamos métodos de extracción de caracterı́sticas, basados en técnicas de filtrado y de análisis de la morfologı́a de la señal ECG, detectando, en particular, el llamado complejo QRS de cada latido del corazón y ubicando el respectivo pico R, siendo la medida del intervalo RR, que transcurre desde el inicio de una onda R hasta el inicio de la onda siguiente, un aspecto clı́nicamente relevante. Analizamos el desempeño predictivo de técnicas de clasificación supervisada, tales como árboles generados por partición recursiva y bosques aleatorios, empleadas en combinación con los métodos de extracción de caracterı́sticas de la señal ECG. Consideramos un banco de entrenamiento internacional, constituido para la competencia 2017 “PhysioNet/Computing in Cardiology (CinC)”, y un conjunto de prueba de registros de ECG de una población de adultos mayores de Uruguay, generado en 2019 en virtud de una colaboración entre la CHSCV y el Plan Ibirapitá. Los resultados obtenidos se interpretan a través de los diagnósticos disponibles de los ECG realizados por expertos cardiólogos clı́nicos.
eu_rights_str_mv openAccess
format conferenceObject
id REDI_d0fab771457ab4228c32153801eff147
identifier_str_mv FSDA_1_2018_1_154651
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language spa
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/486
publishDate 2020
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA)
Acceso abierto
spelling Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA)Acceso abiertoinfo:eu-repo/semantics/openAccess2021-12-08T18:37:10Z2021-12-08T18:37:10Z2020-10-07https://hdl.handle.net/20.500.12381/486FSDA_1_2018_1_154651En este trabajo desarrollamos los procedimientos basados en algoritmos de aprendizaje automático diseñados para la identificación de una patologı́a cardı́aca, la fibrilación auricular (FA), a partir de la señal electrocardiográfica (ECG) de una derivación y de corta duración registrada con un dispositivo de tecno- logı́a electrónica móvil (DTEM). El dispositivo móvil tiene un método interno de clasificación que permite un análisis instantáneo del registro de ECG en ritmo normal, posible FA, o sin clasificar. Visto la importancia del diagnóstico temprano de patologı́as cardiovasculares tales como la FA, nuestro objetivo es mejorar la capacidad de clasificación del DTEM el cual, en la práctica, deja sin clasificar un conjunto relevante de registros de ECG. A tal efecto, utilizamos métodos de extracción de caracterı́sticas, basados en técnicas de filtrado y de análisis de la morfologı́a de la señal ECG, detectando, en particular, el llamado complejo QRS de cada latido del corazón y ubicando el respectivo pico R, siendo la medida del intervalo RR, que transcurre desde el inicio de una onda R hasta el inicio de la onda siguiente, un aspecto clı́nicamente relevante. Analizamos el desempeño predictivo de técnicas de clasificación supervisada, tales como árboles generados por partición recursiva y bosques aleatorios, empleadas en combinación con los métodos de extracción de caracterı́sticas de la señal ECG. Consideramos un banco de entrenamiento internacional, constituido para la competencia 2017 “PhysioNet/Computing in Cardiology (CinC)”, y un conjunto de prueba de registros de ECG de una población de adultos mayores de Uruguay, generado en 2019 en virtud de una colaboración entre la CHSCV y el Plan Ibirapitá. Los resultados obtenidos se interpretan a través de los diagnósticos disponibles de los ECG realizados por expertos cardiólogos clı́nicos.Agencia Nacional de Investigación e Innovaciónspahttps://hdl.handle.net/20.500.12381/487https://hdl.handle.net/20.500.12381/487Seminario SIESTA. Instituto de Estadística, Facultad de Ciencias Económicas y de Administración, Universidad de la República, 7 de octubre de 2020reponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónMachine learningInteligencia artificialElectrocardiogramaFibrilación auricularClasificación supervisadaCiencias Naturales y ExactasMatemáticasEstadística y ProbabilidadCiencias Médicas y de la SaludMedicina ClínicaSistemas Cardíaco y CardiovascularUna introducción acerca de la detección de la fibrilación auricular en una población de adultos mayores en UruguayDocumento de conferenciaPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject//Ciencias Naturales y Exactas/Matemáticas/Estadística y Probabilidad//Ciencias Médicas y de la Salud/Medicina Clínica/Sistemas Cardíaco y CardiovascularScavino, MarcoEstragó, VirginiaMuñoz, Matı́asCastrillejo, AndrésÁlvarez-Vaz, RamónLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/486/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALPresentación Siesta 14 10 2020.pdfPresentación Siesta 14 10 2020.pdfPresentaciónapplication/pdf3053390https://redi.anii.org.uy/jspui/bitstream/20.500.12381/486/1/Presentaci%c3%b3n%20Siesta%2014%2010%202020.pdf90f7e6294df9fec8a068fbfa28463041MD5120.500.12381/4862021-12-08 15:46:07.43oai:redi.anii.org.uy:20.500.12381/486PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212021-12-08T18:46:07REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle Una introducción acerca de la detección de la fibrilación auricular en una población de adultos mayores en Uruguay
Scavino, Marco
Machine learning
Inteligencia artificial
Electrocardiograma
Fibrilación auricular
Clasificación supervisada
Ciencias Naturales y Exactas
Matemáticas
Estadística y Probabilidad
Ciencias Médicas y de la Salud
Medicina Clínica
Sistemas Cardíaco y Cardiovascular
status_str publishedVersion
title Una introducción acerca de la detección de la fibrilación auricular en una población de adultos mayores en Uruguay
title_full Una introducción acerca de la detección de la fibrilación auricular en una población de adultos mayores en Uruguay
title_fullStr Una introducción acerca de la detección de la fibrilación auricular en una población de adultos mayores en Uruguay
title_full_unstemmed Una introducción acerca de la detección de la fibrilación auricular en una población de adultos mayores en Uruguay
title_short Una introducción acerca de la detección de la fibrilación auricular en una población de adultos mayores en Uruguay
title_sort Una introducción acerca de la detección de la fibrilación auricular en una población de adultos mayores en Uruguay
topic Machine learning
Inteligencia artificial
Electrocardiograma
Fibrilación auricular
Clasificación supervisada
Ciencias Naturales y Exactas
Matemáticas
Estadística y Probabilidad
Ciencias Médicas y de la Salud
Medicina Clínica
Sistemas Cardíaco y Cardiovascular
url https://hdl.handle.net/20.500.12381/486