A Simple Proof of the Gross-Saccoman Multigraph Conjecture

Martínez, Mauro - Romero, Pablo - Viera, Julián

Resumen:

An enigmatic conjecture in network synthesis asserts that the the uniformly most reliable multigraphs are simple. Daniel Gross and John Saccoman proved in 1998 that the answer is affirmative whenever m ≤ n + 2, where n and m is the respective number of nodes and edges of the multigraphs. They conjectured that the optimality is also achieved by simple graphs when m = n + 3. A proof for this conjecture recently appeared. In this article we provide a unified short proof for the previous cases where m ≤ n + 3. Our proof strategy holds whenever the most reliable simple graphs satisfy the self similarity property. As a consequence, it could be used to study the general multigraph conjecture for larger graph classes.


Detalles Bibliográficos
2022
Agencia Nacional de Investigación e Innovación
Network Reliability
Gross-Saccoman multigraph conjecture
Graph Theory
Uniformly Most Reliable Graph
Self Similarity Property
Multigraph
Ciencias Naturales y Exactas
Matemáticas
Matemática Aplicada
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/701
Acceso abierto
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)

Resultados similares