A Simple Proof of the Gross-Saccoman Multigraph Conjecture

Martínez, Mauro - Romero, Pablo - Viera, Julián

Resumen:

An enigmatic conjecture in network synthesis asserts that the the uniformly most reliable multigraphs are simple. Daniel Gross and John Saccoman proved in 1998 that the answer is affirmative whenever m ≤ n + 2, where n and m is the respective number of nodes and edges of the multigraphs. They conjectured that the optimality is also achieved by simple graphs when m = n + 3. A proof for this conjecture recently appeared. In this article we provide a unified short proof for the previous cases where m ≤ n + 3. Our proof strategy holds whenever the most reliable simple graphs satisfy the self similarity property. As a consequence, it could be used to study the general multigraph conjecture for larger graph classes.


Detalles Bibliográficos
2022
Agencia Nacional de Investigación e Innovación
Network Reliability
Gross-Saccoman multigraph conjecture
Graph Theory
Uniformly Most Reliable Graph
Self Similarity Property
Multigraph
Ciencias Naturales y Exactas
Matemáticas
Matemática Aplicada
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/701
Acceso abierto
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
_version_ 1814959262645878784
author Martínez, Mauro
author2 Romero, Pablo
Viera, Julián
author2_role author
author
author_facet Martínez, Mauro
Romero, Pablo
Viera, Julián
author_role author
bitstream.checksum.fl_str_mv 3c9d86d36485746409b4281a0893d729
c9b3dd74dc17d5a4d2053edecbed3148
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/701/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/701/1/9%20%281%29.pdf
collection REDI
dc.creator.none.fl_str_mv Martínez, Mauro
Romero, Pablo
Viera, Julián
dc.date.accessioned.none.fl_str_mv 2022-10-20T23:31:48Z
dc.date.issued.none.fl_str_mv 2022-06-01
dc.description.abstract.none.fl_txt_mv An enigmatic conjecture in network synthesis asserts that the the uniformly most reliable multigraphs are simple. Daniel Gross and John Saccoman proved in 1998 that the answer is affirmative whenever m ≤ n + 2, where n and m is the respective number of nodes and edges of the multigraphs. They conjectured that the optimality is also achieved by simple graphs when m = n + 3. A proof for this conjecture recently appeared. In this article we provide a unified short proof for the previous cases where m ≤ n + 3. Our proof strategy holds whenever the most reliable simple graphs satisfy the self similarity property. As a consequence, it could be used to study the general multigraph conjecture for larger graph classes.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
dc.identifier.anii.es.fl_str_mv FCE_1_2019_1_156693
dc.identifier.doi.none.fl_str_mv 10.1002/net.22110
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/701
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv Wiley
dc.rights.embargoterm.es.fl_str_mv 2023-09-30
2023-06-01
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.es.fl_str_mv Networks
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.none.fl_str_mv Ciencias Naturales y Exactas
Matemáticas
Matemática Aplicada
dc.subject.es.fl_str_mv Network Reliability
Gross-Saccoman multigraph conjecture
Graph Theory
Uniformly Most Reliable Graph
Self Similarity Property
Multigraph
dc.title.none.fl_str_mv A Simple Proof of the Gross-Saccoman Multigraph Conjecture
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es.fl_str_mv Enviado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description An enigmatic conjecture in network synthesis asserts that the the uniformly most reliable multigraphs are simple. Daniel Gross and John Saccoman proved in 1998 that the answer is affirmative whenever m ≤ n + 2, where n and m is the respective number of nodes and edges of the multigraphs. They conjectured that the optimality is also achieved by simple graphs when m = n + 3. A proof for this conjecture recently appeared. In this article we provide a unified short proof for the previous cases where m ≤ n + 3. Our proof strategy holds whenever the most reliable simple graphs satisfy the self similarity property. As a consequence, it could be used to study the general multigraph conjecture for larger graph classes.
eu_rights_str_mv openAccess
format article
id REDI_cf0600225961119eae2a7e7ecadd5403
identifier_str_mv FCE_1_2019_1_156693
10.1002/net.22110
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language eng
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/701
publishDate 2022
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
Acceso abierto
2023-09-30
2023-06-01
spelling Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)Acceso abierto2023-09-302023-06-01info:eu-repo/semantics/openAccess2022-10-20T23:31:48Z2022-06-01https://hdl.handle.net/20.500.12381/701FCE_1_2019_1_15669310.1002/net.22110An enigmatic conjecture in network synthesis asserts that the the uniformly most reliable multigraphs are simple. Daniel Gross and John Saccoman proved in 1998 that the answer is affirmative whenever m ≤ n + 2, where n and m is the respective number of nodes and edges of the multigraphs. They conjectured that the optimality is also achieved by simple graphs when m = n + 3. A proof for this conjecture recently appeared. In this article we provide a unified short proof for the previous cases where m ≤ n + 3. Our proof strategy holds whenever the most reliable simple graphs satisfy the self similarity property. As a consequence, it could be used to study the general multigraph conjecture for larger graph classes.Agencia Nacional de Investigación e InnovaciónengWileyNetworksreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónNetwork ReliabilityGross-Saccoman multigraph conjectureGraph TheoryUniformly Most Reliable GraphSelf Similarity PropertyMultigraphCiencias Naturales y ExactasMatemáticasMatemática AplicadaA Simple Proof of the Gross-Saccoman Multigraph ConjectureArtículoEnviadoinfo:eu-repo/semantics/submittedVersioninfo:eu-repo/semantics/articleUniversidad de la RepúblicaUniversidad de Buenos Aires//Ciencias Naturales y Exactas/Matemáticas/Matemática AplicadaMartínez, MauroRomero, PabloViera, JuliánLICENSElicense.txtlicense.txttext/plain; charset=utf-84944https://redi.anii.org.uy/jspui/bitstream/20.500.12381/701/2/license.txt3c9d86d36485746409b4281a0893d729MD52ORIGINAL9 (1).pdf9 (1).pdfGS - Simple Proofapplication/pdf146296https://redi.anii.org.uy/jspui/bitstream/20.500.12381/701/1/9%20%281%29.pdfc9b3dd74dc17d5a4d2053edecbed3148MD5120.500.12381/7012023-06-13 13:50:33.906oai:redi.anii.org.uy:20.500.12381/701PHA+PGI+QUNVRVJETyBERSBDRVNJT04gTk8gRVhDTFVTSVZBIERFIERFUkVDSE9TPC9iPjwvcD4KCjxwPkFjZXB0YW5kbyBsYSBjZXNpw7NuIGRlIGRlcmVjaG9zIGVsIHVzdWFyaW8gREVDTEFSQSBxdWUgb3N0ZW50YSBsYSBjb25kaWNpw7NuIGRlIGF1dG9yIGVuIGVsIHNlbnRpZG8gcXVlIG90b3JnYSBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSBzb2JyZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+Cgo8cD5Db24gZWwgZmluIGRlIGRhciBsYSBtw6F4aW1hIGRpZnVzacOzbiBhIGxhIG9icmEgYSB0cmF2w6lzIGRlbCByZXBvc2l0b3JpbyBkZSBhY2Nlc28gYWJpZXJ0byBSRURJIChodHRwczovL3JlZGkuYW5paS5vcmcudXkpLCBlbCBBVVRPUiBDRURFIGEgPGI+QWdlbmNpYSBOYWNpb25hbCBkZSBJbnZlc3RpZ2FjacOzbiBlIElubm92YWNpw7NuPC9iPiAoPGI+QU5JSTwvYj4pLCBkZSBmb3JtYSBncmF0dWl0YSB5IE5PIEVYQ0xVU0lWQSwgY29uIGNhcsOhY3RlciBpcnJldm9jYWJsZSBlIGlsaW1pdGFkbyBlbiBlbCB0aWVtcG8geSBjb24gw6FtYml0byBtdW5kaWFsLCBsb3MgZGVyZWNob3MgZGUgcmVwcm9kdWNjacOzbiwgZGUgZGlzdHJpYnVjacOzbiwgZGUgY29tdW5pY2FjacOzbiBww7pibGljYSwgaW5jbHVpZG8gZWwgZGVyZWNobyBkZSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZWxlY3Ryw7NuaWNhLCBwYXJhIHF1ZSBwdWVkYSBzZXIgdXRpbGl6YWRhIGRlIGZvcm1hIGxpYnJlIHkgZ3JhdHVpdGEgcG9yIHRvZG9zIGxvcyBxdWUgbG8gZGVzZWVuLjwvcD4KCjxwPkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOjwvcD4KCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgPGI+QU5JSTwvYj46PC9wPgoKPHVsPgo8bGkgdmFsdWU9KGEpPlRyYW5zZm9ybWFyIGxhIG9icmEgZW4gbGEgbWVkaWRhIGVuIHF1ZSBzZWEgbmVjZXNhcmlvIHBhcmEgYWRhcHRhcmxhIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hIHN1c2NlcHRpYmxlIGRlIGluY29ycG9yYWNpw7NuIGEgSW50ZXJuZXQ7IHJlYWxpemFyIGxhcyBhZGFwdGFjaW9uZXMgbmVjZXNhcmlhcyBwYXJhIGhhY2VyIHBvc2libGUgc3UgYWNjZXNvIHkgdmlzdWFsaXphY2nDs24gcGVybWFuZW50ZSwgYcO6biBwb3IgcGFydGUgZGUgcGVyc29uYXMgY29uIGRpc2NhcGFjaWRhZCwgcmVhbGl6YXIgbGFzIG1pZ3JhY2lvbmVzIGRlIGZvcm1hdG9zIHBhcmEgYXNlZ3VyYXIgbGEgcHJlc2VydmFjacOzbiBhIGxhcmdvIHBsYXpvLCBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24gbyBkZSBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIEVuIG5pbmfDum4gY2FzbyBkaWNoYXMgbW9kaWZpY2FjaW9uZXMgaW1wbGljYXLDoW4gYWR1bHRlcmFjaW9uZXMgZW4gZWwgY29udGVuaWRvIGRlIGxhIG9icmEuPC9saT4gCjxsaSB2YWx1ZT0oYik+UmVwcm9kdWNpciBsYSBvYnJhIGVuIHVuIG1lZGlvIGRpZ2l0YWwgcGFyYSBzdSBpbmNvcnBvcmFjacOzbiBhIHNpc3RlbWFzIGRlIGLDunNxdWVkYSB5IHJlY3VwZXJhY2nDs24sIGluY2x1eWVuZG8gZWwgZGVyZWNobyBhIHJlcHJvZHVjaXIgeSBhbG1hY2VuYXJsYSBlbiBzZXJ2aWRvcmVzIHUgb3Ryb3MgbWVkaW9zIGRpZ2l0YWxlcyBhIGxvcyBlZmVjdG9zIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uPC9saT4gCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gCjxsaSB2YWx1ZT0oZCk+UmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0Lgo8L3VsPgoKPHA+RW4gdmlydHVkIGRlbCBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZvIGRlIGxhIGNlc2nDs24sIGVsIEF1dG9yIGNvbnNlcnZhIHRvZG9zIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhLCB5IHBvZHLDoSBwb25lcmxhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBlc3RhIHkgZW4gcG9zdGVyaW9yZXMgdmVyc2lvbmVzLCBhIHRyYXbDqXMgZGUgbG9zIG1lZGlvcyBxdWUgZXN0aW1lIG9wb3J0dW5vcy48L3A+Cgo8cD5FbCBBdXRvciBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhbiBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3RybyB5IGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhIG9icmEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MsIG5pIGVzIGRpc2NyaW1pbmF0b3Jpby4gPGI+QU5JSTwvYj4gZXN0YXLDoSBleGVudGEgZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+Cgo8cD5MYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS48L3A+Cgo8cD5FbCBBdXRvciwgY29tbyBnYXJhbnRlIGRlIGxhIGF1dG9yw61hIGRlIGxhIG9icmEgeSBlbiByZWxhY2nDs24gYSBsYSBtaXNtYSwgZGVjbGFyYSBxdWUgPGI+QU5JSTwvYj4gc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMYSA8Yj5BTklJPC9iPiBlc3RhcsOhIGV4ZW50YSBkZSBlamVyY2l0YXIgYWNjaW9uZXMgbGVnYWxlcyBlbiBub21icmUgZGVsIEF1dG9yIGVuIGVsIHN1cHVlc3RvIGRlIGluZnJhY2Npb25lcyBhIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZXJpdmFkb3MgZGVsIGRlcMOzc2l0byB5IGFyY2hpdm8gZGUgbGEgb2JyYS48L3A+Cgo8cD48Yj5BTklJPC9iPiBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4KCjxwPkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyA8Yj5BTklJPC9iPiBwb2Ryw6EgcmV0aXJhciBvIGludmlzaWJpbGl6YXIgbGEgb2JyYSBkZSBSRURJLCBwcmV2aWEgbm90aWZpY2FjacOzbiBhbCBBdXRvciwgZW4gc3VwdWVzdG9zIHN1ZmljaWVudGVtZW50ZSBqdXN0aWZpY2Fkb3MsIG8gZW4gY2FzbyBkZSByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLjwvcD4KGobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212023-06-13T16:50:33REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle A Simple Proof of the Gross-Saccoman Multigraph Conjecture
Martínez, Mauro
Network Reliability
Gross-Saccoman multigraph conjecture
Graph Theory
Uniformly Most Reliable Graph
Self Similarity Property
Multigraph
Ciencias Naturales y Exactas
Matemáticas
Matemática Aplicada
status_str submittedVersion
title A Simple Proof of the Gross-Saccoman Multigraph Conjecture
title_full A Simple Proof of the Gross-Saccoman Multigraph Conjecture
title_fullStr A Simple Proof of the Gross-Saccoman Multigraph Conjecture
title_full_unstemmed A Simple Proof of the Gross-Saccoman Multigraph Conjecture
title_short A Simple Proof of the Gross-Saccoman Multigraph Conjecture
title_sort A Simple Proof of the Gross-Saccoman Multigraph Conjecture
topic Network Reliability
Gross-Saccoman multigraph conjecture
Graph Theory
Uniformly Most Reliable Graph
Self Similarity Property
Multigraph
Ciencias Naturales y Exactas
Matemáticas
Matemática Aplicada
url https://hdl.handle.net/20.500.12381/701