Statistical Model for Schedule Prediction: Validation in a Housing-Cooperative Construction Database

Rudeli, Natalia - Santilli, Adrián - Puente, I. - Viles, Elisabeth

Resumen:

There are often considerable differences between the planned schedule for a construction project and what later develops during actual construction. This paper introduces an innovativeapproach that uses MarkovChain models to support predictions during earned value analyses. A statistical model was developed to predict possible deviations in a project schedule and the future progress of a project. This model, based on Markov chains, uses data from the past to adjust future predictions. A case study was built from a database of 90 housing cooperative construction projects and was validated in 12 more projects. A cross validation of three interactions was also carried out, obtaininganerror of 2.38% inthe prediction offuture progressandanerror of 4.29% intheprediction of construction timing.Theinnovative prediction model presented in this paper contributes to the management body of knowledge by introducing a new tool for the management and control of construction timing. The method presented improves construction management because it predicts future deviations in scheduleswithreducederrorsanddeterminestotaldeviationfromaconstructionschedulewithgreatprecision.Thisallowsbettercontroloverwork timing and represents important input in determining strategies and future actions.


Detalles Bibliográficos
2017
Agencia Nacional de Investigación e Innovación
Prediction
Schedule
Earned schedule
Earned value management
Cost and schedule
Ingeniería y Tecnología
Ingeniería Civil
Ingeniería de la Construcción
Español
Agencia Nacional de Investigación e Innovación
REDI
http://hdl.handle.net/20.500.12381/213
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
Resumen:
Sumario:There are often considerable differences between the planned schedule for a construction project and what later develops during actual construction. This paper introduces an innovativeapproach that uses MarkovChain models to support predictions during earned value analyses. A statistical model was developed to predict possible deviations in a project schedule and the future progress of a project. This model, based on Markov chains, uses data from the past to adjust future predictions. A case study was built from a database of 90 housing cooperative construction projects and was validated in 12 more projects. A cross validation of three interactions was also carried out, obtaininganerror of 2.38% inthe prediction offuture progressandanerror of 4.29% intheprediction of construction timing.Theinnovative prediction model presented in this paper contributes to the management body of knowledge by introducing a new tool for the management and control of construction timing. The method presented improves construction management because it predicts future deviations in scheduleswithreducederrorsanddeterminestotaldeviationfromaconstructionschedulewithgreatprecision.Thisallowsbettercontroloverwork timing and represents important input in determining strategies and future actions.