Analyzing constrained LLM through PDFA-learning

Carrasco, Matías - Mayr, Franz - Yovine, Sergio - Kidd, Johny - Iturbide, Martín - da Silva, Juan - Garat, Alejo

Resumen:

We define a congruence that copes with null next-symbol probabilities that arise when the output of a language model is constrained by some means during text generation. We develop an algorithm for efficiently learning the quotient with respect to this congruence and evaluate it on case studies for analyzing statistical properties of LLM.


Detalles Bibliográficos
2024
Agencia Nacional de Investigación e Innovación
Inteligencia artificial generativa
Grandes modelos de lenguaje
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Ciencias de la Computación
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/3624
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
Resumen:
Sumario:We define a congruence that copes with null next-symbol probabilities that arise when the output of a language model is constrained by some means during text generation. We develop an algorithm for efficiently learning the quotient with respect to this congruence and evaluate it on case studies for analyzing statistical properties of LLM.