Active Learning of Regular Languages as an Approach to Neural Language Models Verification
Supervisor(es): Yovine, Sergio
Resumen:
El presente trabajo aborda el problema general de la verificación del comportamiento de redes neuronales que procesan secuencias, en concreto los aceptores neuronales y los modelos neuronales de lenguaje. La tesis desarrolla un marco teórico-práctico para la extracción de abstracciones formales y la verificación de las redes neuronales bajo análisis. Este proceso se basa en dos ideas centrales: 1) tratar la red neuronal como una caja negra, y 2) utilizar un marco probabilístico para analizar en qué medida el modelo extraído se aproxima al original. Para ello, se proponen, desarrollan y analizan una serie de algoritmos y técnicas de aprendizaje activo. Para el caso de los aceptores neuronales se presenta un procedimiento de verificación de propiedades de redes neuronales. Este enfoque es capaz de verificar propiedades sin construir explícitamente representaciones de la red. Se demuestra que este enfoque ofrece mejores garantías y es más eficiente que la verificación posterior al aprendizaje, en la que la propiedad se verifica únicamente sobre el modelo aprendido de la red. Además, no requiere recurrir a un procedimiento de decisión externo para la verificación ni fijar un formalismo específico de especificación de requisitos. Para el caso de los modelos neuronales de lenguaje se presenta un algoritmo de aprendizaje basado en una congruencia sobre secuencias que se parametriza mediante una relación de equivalencia sobre distribuciones de probabilidad. El algoritmo de aprendizaje se implementa utilizando una estructura de datos en árbol y se muestra que es empíricamente más eficiente que las técnicas de referencia.
2024 | |
Agencia Nacional de Investigación e Innovación Universidad ORT Uruguay |
|
Inteligencia artificial Inferencia regular Verificación Aprendizaje automático Inferencia gramatical Ciencias Naturales y Exactas Ciencias de la Computación e Información |
|
Inglés | |
Agencia Nacional de Investigación e Innovación | |
REDI | |
https://hdl.handle.net/20.500.12381/3622 | |
Acceso abierto | |
Reconocimiento 4.0 Internacional. (CC BY) |
_version_ | 1814959257773146112 |
---|---|
author | Mayr, Franz |
author_facet | Mayr, Franz |
author_role | author |
bitstream.checksum.fl_str_mv | a4ce09f01b5dd771727aa05c73851623 3012cd908b50c2f177b16c6bd09c8be8 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/3622/2/license.txt https://redi.anii.org.uy/jspui/bitstream/20.500.12381/3622/1/PhD_Thesis___Franz_Mayr.pdf |
collection | REDI |
dc.creator.advisor.none.fl_str_mv | Yovine, Sergio |
dc.creator.none.fl_str_mv | Mayr, Franz |
dc.date.accessioned.none.fl_str_mv | 2024-09-10T19:19:54Z |
dc.date.available.none.fl_str_mv | 2024-09-10T19:19:54Z |
dc.date.issued.none.fl_str_mv | 2024-06-03 |
dc.description.abstract.none.fl_txt_mv | El presente trabajo aborda el problema general de la verificación del comportamiento de redes neuronales que procesan secuencias, en concreto los aceptores neuronales y los modelos neuronales de lenguaje. La tesis desarrolla un marco teórico-práctico para la extracción de abstracciones formales y la verificación de las redes neuronales bajo análisis. Este proceso se basa en dos ideas centrales: 1) tratar la red neuronal como una caja negra, y 2) utilizar un marco probabilístico para analizar en qué medida el modelo extraído se aproxima al original. Para ello, se proponen, desarrollan y analizan una serie de algoritmos y técnicas de aprendizaje activo. Para el caso de los aceptores neuronales se presenta un procedimiento de verificación de propiedades de redes neuronales. Este enfoque es capaz de verificar propiedades sin construir explícitamente representaciones de la red. Se demuestra que este enfoque ofrece mejores garantías y es más eficiente que la verificación posterior al aprendizaje, en la que la propiedad se verifica únicamente sobre el modelo aprendido de la red. Además, no requiere recurrir a un procedimiento de decisión externo para la verificación ni fijar un formalismo específico de especificación de requisitos. Para el caso de los modelos neuronales de lenguaje se presenta un algoritmo de aprendizaje basado en una congruencia sobre secuencias que se parametriza mediante una relación de equivalencia sobre distribuciones de probabilidad. El algoritmo de aprendizaje se implementa utilizando una estructura de datos en árbol y se muestra que es empíricamente más eficiente que las técnicas de referencia. |
dc.description.sponsorship.none.fl_txt_mv | Agencia Nacional de Investigación e Innovación Universidad ORT Uruguay |
dc.identifier.anii.es.fl_str_mv | FSDA_1_2018_1_154419 FMV_1_2019_1_155913 IA_1_2022_1_173516 FMV_1_2023_1_175864 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12381/3622 |
dc.language.iso.none.fl_str_mv | eng |
dc.publisher.es.fl_str_mv | Universidad de la República. Facultad de Ingeniería PEDECIBA |
dc.rights.*.fl_str_mv | Acceso abierto |
dc.rights.license.none.fl_str_mv | Reconocimiento 4.0 Internacional. (CC BY) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:REDI instname:Agencia Nacional de Investigación e Innovación instacron:Agencia Nacional de Investigación e Innovación |
dc.subject.anii.none.fl_str_mv | Ciencias Naturales y Exactas Ciencias de la Computación e Información |
dc.subject.es.fl_str_mv | Inteligencia artificial Inferencia regular Verificación Aprendizaje automático Inferencia gramatical |
dc.title.none.fl_str_mv | Active Learning of Regular Languages as an Approach to Neural Language Models Verification |
dc.type.es.fl_str_mv | Tesis de doctorado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/doctoralThesis |
dc.type.version.es.fl_str_mv | Aceptado |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | El presente trabajo aborda el problema general de la verificación del comportamiento de redes neuronales que procesan secuencias, en concreto los aceptores neuronales y los modelos neuronales de lenguaje. La tesis desarrolla un marco teórico-práctico para la extracción de abstracciones formales y la verificación de las redes neuronales bajo análisis. Este proceso se basa en dos ideas centrales: 1) tratar la red neuronal como una caja negra, y 2) utilizar un marco probabilístico para analizar en qué medida el modelo extraído se aproxima al original. Para ello, se proponen, desarrollan y analizan una serie de algoritmos y técnicas de aprendizaje activo. Para el caso de los aceptores neuronales se presenta un procedimiento de verificación de propiedades de redes neuronales. Este enfoque es capaz de verificar propiedades sin construir explícitamente representaciones de la red. Se demuestra que este enfoque ofrece mejores garantías y es más eficiente que la verificación posterior al aprendizaje, en la que la propiedad se verifica únicamente sobre el modelo aprendido de la red. Además, no requiere recurrir a un procedimiento de decisión externo para la verificación ni fijar un formalismo específico de especificación de requisitos. Para el caso de los modelos neuronales de lenguaje se presenta un algoritmo de aprendizaje basado en una congruencia sobre secuencias que se parametriza mediante una relación de equivalencia sobre distribuciones de probabilidad. El algoritmo de aprendizaje se implementa utilizando una estructura de datos en árbol y se muestra que es empíricamente más eficiente que las técnicas de referencia. |
eu_rights_str_mv | openAccess |
format | doctoralThesis |
id | REDI_88d61f2647ba4999217628e96cd50c8f |
identifier_str_mv | FSDA_1_2018_1_154419 FMV_1_2019_1_155913 IA_1_2022_1_173516 FMV_1_2023_1_175864 |
instacron_str | Agencia Nacional de Investigación e Innovación |
institution | Agencia Nacional de Investigación e Innovación |
instname_str | Agencia Nacional de Investigación e Innovación |
language | eng |
network_acronym_str | REDI |
network_name_str | REDI |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/3622 |
publishDate | 2024 |
reponame_str | REDI |
repository.mail.fl_str_mv | jmaldini@anii.org.uy |
repository.name.fl_str_mv | REDI - Agencia Nacional de Investigación e Innovación |
repository_id_str | 9421 |
rights_invalid_str_mv | Reconocimiento 4.0 Internacional. (CC BY) Acceso abierto |
spelling | Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2024-09-10T19:19:54Z2024-09-10T19:19:54Z2024-06-03https://hdl.handle.net/20.500.12381/3622FSDA_1_2018_1_154419FMV_1_2019_1_155913IA_1_2022_1_173516FMV_1_2023_1_175864El presente trabajo aborda el problema general de la verificación del comportamiento de redes neuronales que procesan secuencias, en concreto los aceptores neuronales y los modelos neuronales de lenguaje. La tesis desarrolla un marco teórico-práctico para la extracción de abstracciones formales y la verificación de las redes neuronales bajo análisis. Este proceso se basa en dos ideas centrales: 1) tratar la red neuronal como una caja negra, y 2) utilizar un marco probabilístico para analizar en qué medida el modelo extraído se aproxima al original. Para ello, se proponen, desarrollan y analizan una serie de algoritmos y técnicas de aprendizaje activo. Para el caso de los aceptores neuronales se presenta un procedimiento de verificación de propiedades de redes neuronales. Este enfoque es capaz de verificar propiedades sin construir explícitamente representaciones de la red. Se demuestra que este enfoque ofrece mejores garantías y es más eficiente que la verificación posterior al aprendizaje, en la que la propiedad se verifica únicamente sobre el modelo aprendido de la red. Además, no requiere recurrir a un procedimiento de decisión externo para la verificación ni fijar un formalismo específico de especificación de requisitos. Para el caso de los modelos neuronales de lenguaje se presenta un algoritmo de aprendizaje basado en una congruencia sobre secuencias que se parametriza mediante una relación de equivalencia sobre distribuciones de probabilidad. El algoritmo de aprendizaje se implementa utilizando una estructura de datos en árbol y se muestra que es empíricamente más eficiente que las técnicas de referencia.Agencia Nacional de Investigación e InnovaciónUniversidad ORT UruguayengUniversidad de la República. Facultad de IngenieríaPEDECIBAInteligencia artificialInferencia regularVerificaciónAprendizaje automáticoInferencia gramaticalCiencias Naturales y ExactasCiencias de la Computación e InformaciónActive Learning of Regular Languages as an Approach to Neural Language Models VerificationTesis de doctoradoAceptadoinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/doctoralThesis//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e Informaciónreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónMayr, FranzYovine, SergioLICENSElicense.txtlicense.txttext/plain; charset=utf-84967https://redi.anii.org.uy/jspui/bitstream/20.500.12381/3622/2/license.txta4ce09f01b5dd771727aa05c73851623MD52ORIGINALPhD_Thesis___Franz_Mayr.pdfPhD_Thesis___Franz_Mayr.pdfapplication/pdf1669900https://redi.anii.org.uy/jspui/bitstream/20.500.12381/3622/1/PhD_Thesis___Franz_Mayr.pdf3012cd908b50c2f177b16c6bd09c8be8MD5120.500.12381/36222024-10-28 15:18:19.534oai:redi.anii.org.uy:20.500.12381/3622PHA+PGI+QUNVRVJETyBERSBDRVNJT04gTk8gRVhDTFVTSVZBIERFIERFUkVDSE9TPC9iPjwvcD4NCg0KPHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIG9yaWdpbmFsIHF1ZSBlc3TDoSBlbnZpYW5kbyAo4oCcbGEgb2JyYeKAnSkuIEVuIGNhc28gZGUgc2VyIGNvdGl0dWxhciwgZWwgYXV0b3IgZGVjbGFyYSBxdWUgY3VlbnRhIGNvbiBlbCAgY29uc2VudGltaWVudG8gZGUgbG9zIHJlc3RhbnRlcyB0aXR1bGFyZXMgcGFyYSBoYWNlciBsYSBwcmVzZW50ZSBjZXNpw7NuLiBFbiBjYXNvIGRlIHByZXZpYSBjZXNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBleHBsb3RhY2nDs24gc29icmUgbGEgb2JyYSBhIHRlcmNlcm9zLCBlbCBhdXRvciBkZWNsYXJhIHF1ZSB0aWVuZSBsYSBhdXRvcml6YWNpw7NuIGV4cHJlc2EgZGUgZGljaG9zIHRpdHVsYXJlcyBkZSBkZXJlY2hvcyBhIGxvcyBmaW5lcyBkZSBlc3RhIGNlc2nDs24sIG8gYmllbiBxdWUgaGEgY29uc2VydmFkbyBsYSBmYWN1bHRhZCBkZSBjZWRlciBlc3RvcyBkZXJlY2hvcyBlbiBsYSBmb3JtYSBwcmV2aXN0YSBlbiBsYSBwcmVzZW50ZSBjZXNpw7NuLjwvcD4NCg0KPHA+Q29uIGVsIGZpbiBkZSBkYXIgbGEgbcOheGltYSBkaWZ1c2nDs24gYSBsYSBvYnJhIGEgdHJhdsOpcyBkZWwgcmVwb3NpdG9yaW8gZGUgYWNjZXNvIGFiaWVydG8gUkVESSAoaHR0cHM6Ly9yZWRpLmFuaWkub3JnLnV5KSwgZWwgQVVUT1IgQ0VERSBhIDxiPkFnZW5jaWEgTmFjaW9uYWwgZGUgSW52ZXN0aWdhY2nDs24gZSBJbm5vdmFjacOzbjwvYj4gKDxiPkFOSUk8L2I+KSwgZGUgZm9ybWEgZ3JhdHVpdGEgeSBOTyBFWENMVVNJVkEsIGNvbiBjYXLDoWN0ZXIgaXJyZXZvY2FibGUgZSBpbGltaXRhZG8gZW4gZWwgdGllbXBvIHkgY29uIMOhbWJpdG8gbXVuZGlhbCwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRlIGRpc3RyaWJ1Y2nDs24sIGRlIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGluY2x1aWRvIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVsZWN0csOzbmljYSwgcGFyYSBxdWUgcHVlZGEgc2VyIHV0aWxpemFkYSBkZSBmb3JtYSBsaWJyZSB5IGdyYXR1aXRhIHBvciB0b2RvcyBsb3MgcXVlIGxvIGRlc2Vlbi48L3A+DQoNCjxwPkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOjwvcD4NCg0KPHA+TGEgdGl0dWxhcmlkYWQgZGUgbGEgb2JyYSBzZWd1aXLDoSBjb3JyZXNwb25kaWVuZG8gYWwgQXV0b3IgeSBsYSBwcmVzZW50ZSBjZXNpw7NuIGRlIGRlcmVjaG9zIHBlcm1pdGlyw6EgYSA8Yj5BTklJPC9iPjo8L3A+DQoNCjx1bD4NCjxsaSB2YWx1ZT0oYSk+VHJhbnNmb3JtYXIgbGEgb2JyYSBlbiBsYSBtZWRpZGEgZW4gcXVlIHNlYSBuZWNlc2FyaW8gcGFyYSBhZGFwdGFybGEgYSBjdWFscXVpZXIgdGVjbm9sb2fDrWEgc3VzY2VwdGlibGUgZGUgaW5jb3Jwb3JhY2nDs24gYSBJbnRlcm5ldDsgcmVhbGl6YXIgbGFzIGFkYXB0YWNpb25lcyBuZWNlc2FyaWFzIHBhcmEgaGFjZXIgcG9zaWJsZSBzdSBhY2Nlc28geSB2aXN1YWxpemFjacOzbiBwZXJtYW5lbnRlLCBhw7puIHBvciBwYXJ0ZSBkZSBwZXJzb25hcyBjb24gZGlzY2FwYWNpZGFkLCByZWFsaXphciBsYXMgbWlncmFjaW9uZXMgZGUgZm9ybWF0b3MgcGFyYSBhc2VndXJhciBsYSBwcmVzZXJ2YWNpw7NuIGEgbGFyZ28gcGxhem8sIGluY29ycG9yYXIgbG9zIG1ldGFkYXRvcyBuZWNlc2FyaW9zIHBhcmEgcmVhbGl6YXIgZWwgcmVnaXN0cm8gZGUgbGEgb2JyYSwgZSBpbmNvcnBvcmFyIHRhbWJpw6luIOKAnG1hcmNhcyBkZSBhZ3Vh4oCdIG8gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBkZSBzZWd1cmlkYWQgbyBkZSBwcm90ZWNjacOzbiBvIGRlIGlkZW50aWZpY2FjacOzbiBkZSBwcm9jZWRlbmNpYS4gRW4gbmluZ8O6biBjYXNvIGRpY2hhcyBtb2RpZmljYWNpb25lcyBpbXBsaWNhcsOhbiBhZHVsdGVyYWNpb25lcyBlbiBlbCBjb250ZW5pZG8gZGUgbGEgb2JyYS48L2xpPiANCjxsaSB2YWx1ZT0oYik+UmVwcm9kdWNpciBsYSBvYnJhIGVuIHVuIG1lZGlvIGRpZ2l0YWwgcGFyYSBzdSBpbmNvcnBvcmFjacOzbiBhIHNpc3RlbWFzIGRlIGLDunNxdWVkYSB5IHJlY3VwZXJhY2nDs24sIGluY2x1eWVuZG8gZWwgZGVyZWNobyBhIHJlcHJvZHVjaXIgeSBhbG1hY2VuYXJsYSBlbiBzZXJ2aWRvcmVzIHUgb3Ryb3MgbWVkaW9zIGRpZ2l0YWxlcyBhIGxvcyBlZmVjdG9zIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uPC9saT4gDQo8bGkgdmFsdWU9KGMpPlBlcm1pdGlyIGEgbG9zIHVzdWFyaW9zIGxhIGRlc2NhcmdhIGRlIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLjwvbGk+IA0KPGxpIHZhbHVlPShkKT5SZWFsaXphciBsYSBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIG9icmEgYWNjZXNpYmxlIGRlIG1vZG8gbGlicmUgeSBncmF0dWl0byBhIHRyYXbDqXMgZGUgSW50ZXJuZXQuDQo8L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIDxiPkFOSUk8L2I+IGVzdGFyw6EgZXhlbnRhIGRlIGxhIHJldmlzacOzbiBkZWwgY29udGVuaWRvIGRlIGxhIG9icmEsIHF1ZSBlbiB0b2RvIGNhc28gcGVybWFuZWNlcsOhIGJham8gbGEgcmVzcG9uc2FiaWxpZGFkIGV4Y2x1c2l2YSBkZWwgQXV0b3IuPC9wPg0KDQo8cD5MYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS48L3A+DQoNCjxwPkVsIEF1dG9yLCBjb21vIGdhcmFudGUgZGUgbGEgYXV0b3LDrWEgZGUgbGEgb2JyYSB5IGVuIHJlbGFjacOzbiBhIGxhIG1pc21hLCBkZWNsYXJhIHF1ZSA8Yj5BTklJPC9iPiBzZSBlbmN1ZW50cmEgbGlicmUgZGUgdG9kbyB0aXBvIGRlIHJlc3BvbnNhYmlsaWRhZCwgc2VhIMOpc3RhIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSBvIHBlbmFsLCB5IHF1ZSDDqWwgbWlzbW8gYXN1bWUgbGEgcmVzcG9uc2FiaWxpZGFkIGZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1vIG8gZGVtYW5kYSBwb3IgcGFydGUgZGUgdGVyY2Vyb3MuIDxiPkFOSUk8L2I+IGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+PGI+QU5JSTwvYj4gbm90aWZpY2Fyw6EgYWwgQXV0b3IgZGUgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBxdWUgcmVjaWJhIGRlIHRlcmNlcm9zIGVuIHJlbGFjacOzbiBjb24gbGEgb2JyYSB5LCBlbiBwYXJ0aWN1bGFyLCBkZSByZWNsYW1hY2lvbmVzIHJlbGF0aXZhcyBhIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgc29icmUgZWxsYS48L3A+DQoNCjxwPkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyA8Yj5BTklJPC9iPiBwb2Ryw6EgcmV0aXJhciBvIGludmlzaWJpbGl6YXIgbGEgb2JyYSBkZSBSRURJLCBwcmV2aWEgbm90aWZpY2FjacOzbiBhbCBBdXRvciwgZW4gc3VwdWVzdG9zIHN1ZmljaWVudGVtZW50ZSBqdXN0aWZpY2Fkb3MsIG8gZW4gY2FzbyBkZSByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLjwvcD4=Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212024-10-28T18:18:19REDI - Agencia Nacional de Investigación e Innovaciónfalse |
spellingShingle | Active Learning of Regular Languages as an Approach to Neural Language Models Verification Mayr, Franz Inteligencia artificial Inferencia regular Verificación Aprendizaje automático Inferencia gramatical Ciencias Naturales y Exactas Ciencias de la Computación e Información |
status_str | acceptedVersion |
title | Active Learning of Regular Languages as an Approach to Neural Language Models Verification |
title_full | Active Learning of Regular Languages as an Approach to Neural Language Models Verification |
title_fullStr | Active Learning of Regular Languages as an Approach to Neural Language Models Verification |
title_full_unstemmed | Active Learning of Regular Languages as an Approach to Neural Language Models Verification |
title_short | Active Learning of Regular Languages as an Approach to Neural Language Models Verification |
title_sort | Active Learning of Regular Languages as an Approach to Neural Language Models Verification |
topic | Inteligencia artificial Inferencia regular Verificación Aprendizaje automático Inferencia gramatical Ciencias Naturales y Exactas Ciencias de la Computación e Información |
url | https://hdl.handle.net/20.500.12381/3622 |