An Assessment of the Application of Private Aggregation of Ensemble Models to Sensible Data
Resumen:
This paper explores the use of Private Aggregation of Teacher Ensembles (PATE) in a setting where students have their own private data that cannot be revealed as is to the ensemble. We propose a privacy model that introduces a local differentially private mechanism to protect student data. We implemented and analyzed it in case studies from security and health domains, and the result of the experiment was twofold. First, this model does not significantly affecs predictive capabilities, and second, it unveiled interesting issues with the so-called data dependency privacy loss metric, namely, high variance and values.
2021 | |
machine learning differential privacy private aggregation of teacher ensemble Ciencias Naturales y Exactas Ciencias de la Computación e Información |
|
Inglés | |
Agencia Nacional de Investigación e Innovación | |
REDI | |
https://hdl.handle.net/20.500.12381/456
https://doi.org/10.3390/make3040039 |
|
Acceso abierto | |
Reconocimiento 4.0 Internacional. (CC BY) |
Resultados similares
-
Implementación en PySyft de "An Assessment of the Application of Private Aggregation of Ensemble Models to Sensible Data"
Autor(es):: Pisani, Mikaela
Fecha de publicación:: (2022) -
Prototipo de “Application of Private Aggregation of Ensemble Models to Sensible Data” en la plataforma PySyft de OpenMined
Autor(es):: Pisani, Mikaela
Fecha de publicación:: (2022) -
Application of private aggregation of teacher ensembles framework for malicious web request detection
Autor(es):: Sosa, Sebastián
Fecha de publicación:: (2021) -
Application of PATE to Sensible Data
Autor(es):: Mayr, Franz
Fecha de publicación:: (2021) -
¿Cómo compartir datos de manera efectiva y privada?
Autor(es):: Yovine, Sergio
Fecha de publicación:: (2022)