Predicción de rendimiento en chacras: ¿qué es importante?

Berberian, Natalia - Rosas, Juan - Pérez de Vida, Fernando - Marella, Muzio - Massa, Fernando

Resumen:

Obtener buenas predicciones de rendimiento en las chacras que remiten su producción a la empresa SAMAN S.A. es prioridad tanto para la planificación como para la toma de decisiones de manejo del cultivo. Identificar cuáles son las variables de mayor influencia en el rendimiento, y utilizarlas en un modelo estadístico que contemple su trayectoria histórica es una alternativa metodológica con fuerte sustento teórico para obtener dichas predicciones. La variabilidad en el rendimiento del cultivo de arroz en Uruguay está fuertemente influenciada por la variación en el manejo actual del cultivo, en particular la fecha de siembra. A su vez la variabilidad en la fertilidad del suelo es afectada en gran medida por el uso previo del suelo así como por el manejo del cultivo actual. Específicamente en chacras comerciales, el nivel de enmalezamiento y la lámina de riego están muy relacionados con la variación de rendimiento del cultivo. El uso de modelos mixtos que incorporan en el análisis la posible presencia de correlación temporal y la heterogeneidad entre establecimientos, permitiría identificar patrones subyacentes a la estructura de los datos. Los objetivos de este estudio son; la obtención de un modelo de rendimiento de arroz en condiciones productivas, que considere tanto factores relacionados al manejo del cultivo como la tendencia temporal; identificar cuáles son las variables determinantes del rendimiento y la importancia relativa de cada una, en la capacidad predictiva de dicho modelo. Se pretende utilizar los datos que se generan actualmente en forma rutinaria, obteniendo predicciones insesgadas e independientes de criterios subjetivos


Detalles Bibliográficos
2020
Agencia Nacional de Investigación e Innovación
Modelos mixtos
Datos longitudinales
Condiciones productivas de arroz
Ciencias Naturales y Exactas
Matemáticas
Estadística y Probabilidad
Ciencias Agrícolas
Agricultura, Silvicultura y Pesca
Agricultura
Español
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/477
Acceso abierto
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
_version_ 1814959252810235904
author Berberian, Natalia
author2 Rosas, Juan
Pérez de Vida, Fernando
Marella, Muzio
Massa, Fernando
author2_role author
author
author
author
author_facet Berberian, Natalia
Rosas, Juan
Pérez de Vida, Fernando
Marella, Muzio
Massa, Fernando
author_role author
bitstream.checksum.fl_str_mv 2d97768b1a25a7df5a347bb58fd2d77f
9216028db3fd48106ecce3b486fef37e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/477/4/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/477/3/Berberian%20et%20al%202020_ST-257-INIA.pdf
collection REDI
dc.creator.none.fl_str_mv Berberian, Natalia
Rosas, Juan
Pérez de Vida, Fernando
Marella, Muzio
Massa, Fernando
dc.date.accessioned.none.fl_str_mv 2021-11-03T13:06:05Z
dc.date.available.none.fl_str_mv 2021-11-03T13:06:05Z
dc.date.issued.none.fl_str_mv 2020-11
dc.description.abstract.none.fl_txt_mv Obtener buenas predicciones de rendimiento en las chacras que remiten su producción a la empresa SAMAN S.A. es prioridad tanto para la planificación como para la toma de decisiones de manejo del cultivo. Identificar cuáles son las variables de mayor influencia en el rendimiento, y utilizarlas en un modelo estadístico que contemple su trayectoria histórica es una alternativa metodológica con fuerte sustento teórico para obtener dichas predicciones. La variabilidad en el rendimiento del cultivo de arroz en Uruguay está fuertemente influenciada por la variación en el manejo actual del cultivo, en particular la fecha de siembra. A su vez la variabilidad en la fertilidad del suelo es afectada en gran medida por el uso previo del suelo así como por el manejo del cultivo actual. Específicamente en chacras comerciales, el nivel de enmalezamiento y la lámina de riego están muy relacionados con la variación de rendimiento del cultivo. El uso de modelos mixtos que incorporan en el análisis la posible presencia de correlación temporal y la heterogeneidad entre establecimientos, permitiría identificar patrones subyacentes a la estructura de los datos. Los objetivos de este estudio son; la obtención de un modelo de rendimiento de arroz en condiciones productivas, que considere tanto factores relacionados al manejo del cultivo como la tendencia temporal; identificar cuáles son las variables determinantes del rendimiento y la importancia relativa de cada una, en la capacidad predictiva de dicho modelo. Se pretende utilizar los datos que se generan actualmente en forma rutinaria, obteniendo predicciones insesgadas e independientes de criterios subjetivos
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
dc.identifier.anii.es.fl_str_mv FSDA_1_2017_1_143442
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/477
dc.language.iso.none.fl_str_mv spa
dc.publisher.es.fl_str_mv Instituto Nacional de Investigación Agropecuaria (INIA)
dc.relation.es.fl_str_mv http://doi.org/10.35676/INIA/ST.257
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.es.fl_str_mv Serie Técnica, Nº 257
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.none.fl_str_mv Ciencias Naturales y Exactas
Matemáticas
Estadística y Probabilidad
Ciencias Agrícolas
Agricultura, Silvicultura y Pesca
Agricultura
dc.subject.es.fl_str_mv Modelos mixtos
Datos longitudinales
Condiciones productivas de arroz
dc.title.none.fl_str_mv Predicción de rendimiento en chacras: ¿qué es importante?
dc.type.es.fl_str_mv Reporte técnico
dc.type.none.fl_str_mv info:eu-repo/semantics/report
dc.type.version.es.fl_str_mv Publicado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Obtener buenas predicciones de rendimiento en las chacras que remiten su producción a la empresa SAMAN S.A. es prioridad tanto para la planificación como para la toma de decisiones de manejo del cultivo. Identificar cuáles son las variables de mayor influencia en el rendimiento, y utilizarlas en un modelo estadístico que contemple su trayectoria histórica es una alternativa metodológica con fuerte sustento teórico para obtener dichas predicciones. La variabilidad en el rendimiento del cultivo de arroz en Uruguay está fuertemente influenciada por la variación en el manejo actual del cultivo, en particular la fecha de siembra. A su vez la variabilidad en la fertilidad del suelo es afectada en gran medida por el uso previo del suelo así como por el manejo del cultivo actual. Específicamente en chacras comerciales, el nivel de enmalezamiento y la lámina de riego están muy relacionados con la variación de rendimiento del cultivo. El uso de modelos mixtos que incorporan en el análisis la posible presencia de correlación temporal y la heterogeneidad entre establecimientos, permitiría identificar patrones subyacentes a la estructura de los datos. Los objetivos de este estudio son; la obtención de un modelo de rendimiento de arroz en condiciones productivas, que considere tanto factores relacionados al manejo del cultivo como la tendencia temporal; identificar cuáles son las variables determinantes del rendimiento y la importancia relativa de cada una, en la capacidad predictiva de dicho modelo. Se pretende utilizar los datos que se generan actualmente en forma rutinaria, obteniendo predicciones insesgadas e independientes de criterios subjetivos
eu_rights_str_mv openAccess
format report
id REDI_7c6b34a4aa6ab7449c5972b8a75eef29
identifier_str_mv FSDA_1_2017_1_143442
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language spa
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/477
publishDate 2020
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
Acceso abierto
spelling Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)Acceso abiertoinfo:eu-repo/semantics/openAccess2021-11-03T13:06:05Z2021-11-03T13:06:05Z2020-11https://hdl.handle.net/20.500.12381/477FSDA_1_2017_1_143442Obtener buenas predicciones de rendimiento en las chacras que remiten su producción a la empresa SAMAN S.A. es prioridad tanto para la planificación como para la toma de decisiones de manejo del cultivo. Identificar cuáles son las variables de mayor influencia en el rendimiento, y utilizarlas en un modelo estadístico que contemple su trayectoria histórica es una alternativa metodológica con fuerte sustento teórico para obtener dichas predicciones. La variabilidad en el rendimiento del cultivo de arroz en Uruguay está fuertemente influenciada por la variación en el manejo actual del cultivo, en particular la fecha de siembra. A su vez la variabilidad en la fertilidad del suelo es afectada en gran medida por el uso previo del suelo así como por el manejo del cultivo actual. Específicamente en chacras comerciales, el nivel de enmalezamiento y la lámina de riego están muy relacionados con la variación de rendimiento del cultivo. El uso de modelos mixtos que incorporan en el análisis la posible presencia de correlación temporal y la heterogeneidad entre establecimientos, permitiría identificar patrones subyacentes a la estructura de los datos. Los objetivos de este estudio son; la obtención de un modelo de rendimiento de arroz en condiciones productivas, que considere tanto factores relacionados al manejo del cultivo como la tendencia temporal; identificar cuáles son las variables determinantes del rendimiento y la importancia relativa de cada una, en la capacidad predictiva de dicho modelo. Se pretende utilizar los datos que se generan actualmente en forma rutinaria, obteniendo predicciones insesgadas e independientes de criterios subjetivosAgencia Nacional de Investigación e InnovaciónspaInstituto Nacional de Investigación Agropecuaria (INIA)http://doi.org/10.35676/INIA/ST.257Serie Técnica, Nº 257reponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónModelos mixtosDatos longitudinalesCondiciones productivas de arrozCiencias Naturales y ExactasMatemáticasEstadística y ProbabilidadCiencias AgrícolasAgricultura, Silvicultura y PescaAgriculturaPredicción de rendimiento en chacras: ¿qué es importante?Reporte técnicoPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/reportUniversidad de la república. Facultad de Agronomía//Ciencias Naturales y Exactas/Matemáticas/Estadística y Probabilidad//Ciencias Agrícolas/Agricultura, Silvicultura y Pesca/AgriculturaBerberian, NataliaRosas, JuanPérez de Vida, FernandoMarella, MuzioMassa, FernandoLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/477/4/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD54ORIGINALBerberian et al 2020_ST-257-INIA.pdfBerberian et al 2020_ST-257-INIA.pdfPaginas 9-12 de Serie Técnica de INIA 257application/pdf312156https://redi.anii.org.uy/jspui/bitstream/20.500.12381/477/3/Berberian%20et%20al%202020_ST-257-INIA.pdf9216028db3fd48106ecce3b486fef37eMD5320.500.12381/4772021-11-03 10:06:08.446oai:redi.anii.org.uy:20.500.12381/477PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212021-11-03T13:06:08REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle Predicción de rendimiento en chacras: ¿qué es importante?
Berberian, Natalia
Modelos mixtos
Datos longitudinales
Condiciones productivas de arroz
Ciencias Naturales y Exactas
Matemáticas
Estadística y Probabilidad
Ciencias Agrícolas
Agricultura, Silvicultura y Pesca
Agricultura
status_str publishedVersion
title Predicción de rendimiento en chacras: ¿qué es importante?
title_full Predicción de rendimiento en chacras: ¿qué es importante?
title_fullStr Predicción de rendimiento en chacras: ¿qué es importante?
title_full_unstemmed Predicción de rendimiento en chacras: ¿qué es importante?
title_short Predicción de rendimiento en chacras: ¿qué es importante?
title_sort Predicción de rendimiento en chacras: ¿qué es importante?
topic Modelos mixtos
Datos longitudinales
Condiciones productivas de arroz
Ciencias Naturales y Exactas
Matemáticas
Estadística y Probabilidad
Ciencias Agrícolas
Agricultura, Silvicultura y Pesca
Agricultura
url https://hdl.handle.net/20.500.12381/477