SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES

Maciel, Fernanda

Supervisor(es): Peschel, Joshua

Resumen:

This thesis presents a GIS-based tool Arc-BEST (Bioaccumulation Evaluation Screening Tool) to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System) software, released in 2012. It predicts concentration of concern contaminants in predators tissues from concentrations in organisms at the bottom of the food chain. It also estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The new tool is easy to use, requires few parameters, and is flexible to modify the food chain structure and exposure scenarios. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed and the analysis, comparison and visualization of results. Furthermore, the model was improved to consider up to four trophic levels. The code for Arc-BEST is written in Python, is open-source, and can also be used as a stand-alone model called by other software programs. In this work Arc-BEST is proposed to be used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study of PCBs in the Laurentian Great Lakes, where long-term effects of PCBs is performed, based on concentrations in zebra mussels (Dreissena polymorpha). Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for different exposure scenarios. The distribution of the risks in the different lakes is analyzed, and critical areas are identified.


Detalles Bibliográficos
2015
Agencia Nacional de Investigación e Innovación
Comisión Fulbrigth
University of Illinois at Urbana-Champaign
Bioaccumulation
Risk analysis
Great Lakes
Sostenibilidad en agua, energia y medio ambiente
Ingeniería Civil
Ingenierías y Tecnologías
Inglés
Agencia Nacional de Investigación e Innovación
REDI
http://hdl.handle.net/20.500.12381/142
Acceso abierto
Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA)
_version_ 1814959266236203008
author Maciel, Fernanda
author_facet Maciel, Fernanda
author_role author
bitstream.checksum.fl_str_mv 2d97768b1a25a7df5a347bb58fd2d77f
62afe5d85da2d1e5ed6ebaeae23a8ee0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/142/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/142/1/POS_FUL_2013_1_1.pdf
collection REDI
dc.creator.advisor.none.fl_str_mv Peschel, Joshua
dc.creator.none.fl_str_mv Maciel, Fernanda
dc.date.accessioned.none.fl_str_mv 2019-10-17T14:16:30Z
dc.date.available.none.fl_str_mv 2019-10-17T14:16:30Z
dc.date.issued.none.fl_str_mv 2015
dc.description.abstract.none.fl_txt_mv This thesis presents a GIS-based tool Arc-BEST (Bioaccumulation Evaluation Screening Tool) to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System) software, released in 2012. It predicts concentration of concern contaminants in predators tissues from concentrations in organisms at the bottom of the food chain. It also estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The new tool is easy to use, requires few parameters, and is flexible to modify the food chain structure and exposure scenarios. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed and the analysis, comparison and visualization of results. Furthermore, the model was improved to consider up to four trophic levels. The code for Arc-BEST is written in Python, is open-source, and can also be used as a stand-alone model called by other software programs. In this work Arc-BEST is proposed to be used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study of PCBs in the Laurentian Great Lakes, where long-term effects of PCBs is performed, based on concentrations in zebra mussels (Dreissena polymorpha). Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for different exposure scenarios. The distribution of the risks in the different lakes is analyzed, and critical areas are identified.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
Comisión Fulbrigth
University of Illinois at Urbana-Champaign
dc.format.extent.es.fl_str_mv 82 p.
dc.identifier.anii.es.fl_str_mv POS_FUL_2013_1_1
dc.identifier.citation.es.fl_str_mv Aceptado
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12381/142
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv University of Illinois at Urbana-Champaign
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.es.fl_str_mv Ingeniería Civil
dc.subject.anii.none.fl_str_mv Ingenierías y Tecnologías
dc.subject.es.fl_str_mv Bioaccumulation
Risk analysis
dc.subject.none.fl_str_mv Great Lakes
Sostenibilidad en agua, energia y medio ambiente
dc.title.none.fl_str_mv SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.es.fl_str_mv Aceptado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description This thesis presents a GIS-based tool Arc-BEST (Bioaccumulation Evaluation Screening Tool) to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System) software, released in 2012. It predicts concentration of concern contaminants in predators tissues from concentrations in organisms at the bottom of the food chain. It also estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The new tool is easy to use, requires few parameters, and is flexible to modify the food chain structure and exposure scenarios. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed and the analysis, comparison and visualization of results. Furthermore, the model was improved to consider up to four trophic levels. The code for Arc-BEST is written in Python, is open-source, and can also be used as a stand-alone model called by other software programs. In this work Arc-BEST is proposed to be used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study of PCBs in the Laurentian Great Lakes, where long-term effects of PCBs is performed, based on concentrations in zebra mussels (Dreissena polymorpha). Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for different exposure scenarios. The distribution of the risks in the different lakes is analyzed, and critical areas are identified.
eu_rights_str_mv openAccess
format masterThesis
id REDI_7313e1fed91fdb78b5dcce705d2f17a9
identifier_str_mv Aceptado
POS_FUL_2013_1_1
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language eng
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/142
publishDate 2015
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA)
Acceso abierto
spelling Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA)Acceso abiertoinfo:eu-repo/semantics/openAccess2019-10-17T14:16:30Z2019-10-17T14:16:30Z2015Aceptadohttp://hdl.handle.net/20.500.12381/142POS_FUL_2013_1_1This thesis presents a GIS-based tool Arc-BEST (Bioaccumulation Evaluation Screening Tool) to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System) software, released in 2012. It predicts concentration of concern contaminants in predators tissues from concentrations in organisms at the bottom of the food chain. It also estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The new tool is easy to use, requires few parameters, and is flexible to modify the food chain structure and exposure scenarios. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed and the analysis, comparison and visualization of results. Furthermore, the model was improved to consider up to four trophic levels. The code for Arc-BEST is written in Python, is open-source, and can also be used as a stand-alone model called by other software programs. In this work Arc-BEST is proposed to be used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study of PCBs in the Laurentian Great Lakes, where long-term effects of PCBs is performed, based on concentrations in zebra mussels (Dreissena polymorpha). Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for different exposure scenarios. The distribution of the risks in the different lakes is analyzed, and critical areas are identified.Agencia Nacional de Investigación e InnovaciónComisión FulbrigthUniversity of Illinois at Urbana-Champaign82 p.engUniversity of Illinois at Urbana-ChampaignBioaccumulationRisk analysisGreat LakesSostenibilidad en agua, energia y medio ambienteIngeniería CivilIngenierías y TecnologíasSPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKESTesis de maestríaAceptadoinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/masterThesisreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónMaciel, FernandaPeschel, JoshuaLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/142/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALPOS_FUL_2013_1_1.pdfapplication/pdf8422730https://redi.anii.org.uy/jspui/bitstream/20.500.12381/142/1/POS_FUL_2013_1_1.pdf62afe5d85da2d1e5ed6ebaeae23a8ee0MD5120.500.12381/1422020-09-25 15:08:46.706oai:redi.anii.org.uy:20.500.12381/142PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212020-09-25T18:08:46REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES
Maciel, Fernanda
Bioaccumulation
Risk analysis
Great Lakes
Sostenibilidad en agua, energia y medio ambiente
Ingeniería Civil
Ingenierías y Tecnologías
status_str acceptedVersion
title SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES
title_full SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES
title_fullStr SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES
title_full_unstemmed SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES
title_short SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES
title_sort SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES
topic Bioaccumulation
Risk analysis
Great Lakes
Sostenibilidad en agua, energia y medio ambiente
Ingeniería Civil
Ingenierías y Tecnologías
url http://hdl.handle.net/20.500.12381/142