SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES
Supervisor(es): Peschel, Joshua
Resumen:
This thesis presents a GIS-based tool Arc-BEST (Bioaccumulation Evaluation Screening Tool) to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System) software, released in 2012. It predicts concentration of concern contaminants in predators tissues from concentrations in organisms at the bottom of the food chain. It also estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The new tool is easy to use, requires few parameters, and is flexible to modify the food chain structure and exposure scenarios. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed and the analysis, comparison and visualization of results. Furthermore, the model was improved to consider up to four trophic levels. The code for Arc-BEST is written in Python, is open-source, and can also be used as a stand-alone model called by other software programs. In this work Arc-BEST is proposed to be used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study of PCBs in the Laurentian Great Lakes, where long-term effects of PCBs is performed, based on concentrations in zebra mussels (Dreissena polymorpha). Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for different exposure scenarios. The distribution of the risks in the different lakes is analyzed, and critical areas are identified.
2015 | |
Agencia Nacional de Investigación e Innovación Comisión Fulbrigth University of Illinois at Urbana-Champaign |
|
Bioaccumulation Risk analysis Great Lakes Sostenibilidad en agua, energia y medio ambiente Ingeniería Civil Ingenierías y Tecnologías |
|
Inglés | |
Agencia Nacional de Investigación e Innovación | |
REDI | |
http://hdl.handle.net/20.500.12381/142 | |
Acceso abierto | |
Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA) |
_version_ | 1814959266236203008 |
---|---|
author | Maciel, Fernanda |
author_facet | Maciel, Fernanda |
author_role | author |
bitstream.checksum.fl_str_mv | 2d97768b1a25a7df5a347bb58fd2d77f 62afe5d85da2d1e5ed6ebaeae23a8ee0 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/142/2/license.txt https://redi.anii.org.uy/jspui/bitstream/20.500.12381/142/1/POS_FUL_2013_1_1.pdf |
collection | REDI |
dc.creator.advisor.none.fl_str_mv | Peschel, Joshua |
dc.creator.none.fl_str_mv | Maciel, Fernanda |
dc.date.accessioned.none.fl_str_mv | 2019-10-17T14:16:30Z |
dc.date.available.none.fl_str_mv | 2019-10-17T14:16:30Z |
dc.date.issued.none.fl_str_mv | 2015 |
dc.description.abstract.none.fl_txt_mv | This thesis presents a GIS-based tool Arc-BEST (Bioaccumulation Evaluation Screening Tool) to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System) software, released in 2012. It predicts concentration of concern contaminants in predators tissues from concentrations in organisms at the bottom of the food chain. It also estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The new tool is easy to use, requires few parameters, and is flexible to modify the food chain structure and exposure scenarios. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed and the analysis, comparison and visualization of results. Furthermore, the model was improved to consider up to four trophic levels. The code for Arc-BEST is written in Python, is open-source, and can also be used as a stand-alone model called by other software programs. In this work Arc-BEST is proposed to be used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study of PCBs in the Laurentian Great Lakes, where long-term effects of PCBs is performed, based on concentrations in zebra mussels (Dreissena polymorpha). Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for different exposure scenarios. The distribution of the risks in the different lakes is analyzed, and critical areas are identified. |
dc.description.sponsorship.none.fl_txt_mv | Agencia Nacional de Investigación e Innovación Comisión Fulbrigth University of Illinois at Urbana-Champaign |
dc.format.extent.es.fl_str_mv | 82 p. |
dc.identifier.anii.es.fl_str_mv | POS_FUL_2013_1_1 |
dc.identifier.citation.es.fl_str_mv | Aceptado |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12381/142 |
dc.language.iso.none.fl_str_mv | eng |
dc.publisher.es.fl_str_mv | University of Illinois at Urbana-Champaign |
dc.rights.es.fl_str_mv | Acceso abierto |
dc.rights.license.none.fl_str_mv | Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:REDI instname:Agencia Nacional de Investigación e Innovación instacron:Agencia Nacional de Investigación e Innovación |
dc.subject.anii.es.fl_str_mv | Ingeniería Civil |
dc.subject.anii.none.fl_str_mv | Ingenierías y Tecnologías |
dc.subject.es.fl_str_mv | Bioaccumulation Risk analysis |
dc.subject.none.fl_str_mv | Great Lakes Sostenibilidad en agua, energia y medio ambiente |
dc.title.none.fl_str_mv | SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.es.fl_str_mv | Aceptado |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | This thesis presents a GIS-based tool Arc-BEST (Bioaccumulation Evaluation Screening Tool) to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System) software, released in 2012. It predicts concentration of concern contaminants in predators tissues from concentrations in organisms at the bottom of the food chain. It also estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The new tool is easy to use, requires few parameters, and is flexible to modify the food chain structure and exposure scenarios. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed and the analysis, comparison and visualization of results. Furthermore, the model was improved to consider up to four trophic levels. The code for Arc-BEST is written in Python, is open-source, and can also be used as a stand-alone model called by other software programs. In this work Arc-BEST is proposed to be used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study of PCBs in the Laurentian Great Lakes, where long-term effects of PCBs is performed, based on concentrations in zebra mussels (Dreissena polymorpha). Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for different exposure scenarios. The distribution of the risks in the different lakes is analyzed, and critical areas are identified. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | REDI_7313e1fed91fdb78b5dcce705d2f17a9 |
identifier_str_mv | Aceptado POS_FUL_2013_1_1 |
instacron_str | Agencia Nacional de Investigación e Innovación |
institution | Agencia Nacional de Investigación e Innovación |
instname_str | Agencia Nacional de Investigación e Innovación |
language | eng |
network_acronym_str | REDI |
network_name_str | REDI |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/142 |
publishDate | 2015 |
reponame_str | REDI |
repository.mail.fl_str_mv | jmaldini@anii.org.uy |
repository.name.fl_str_mv | REDI - Agencia Nacional de Investigación e Innovación |
repository_id_str | 9421 |
rights_invalid_str_mv | Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA) Acceso abierto |
spelling | Reconocimiento-CompartirIgual 4.0 Internacional. (CC BY-SA)Acceso abiertoinfo:eu-repo/semantics/openAccess2019-10-17T14:16:30Z2019-10-17T14:16:30Z2015Aceptadohttp://hdl.handle.net/20.500.12381/142POS_FUL_2013_1_1This thesis presents a GIS-based tool Arc-BEST (Bioaccumulation Evaluation Screening Tool) to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System) software, released in 2012. It predicts concentration of concern contaminants in predators tissues from concentrations in organisms at the bottom of the food chain. It also estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The new tool is easy to use, requires few parameters, and is flexible to modify the food chain structure and exposure scenarios. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed and the analysis, comparison and visualization of results. Furthermore, the model was improved to consider up to four trophic levels. The code for Arc-BEST is written in Python, is open-source, and can also be used as a stand-alone model called by other software programs. In this work Arc-BEST is proposed to be used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study of PCBs in the Laurentian Great Lakes, where long-term effects of PCBs is performed, based on concentrations in zebra mussels (Dreissena polymorpha). Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for different exposure scenarios. The distribution of the risks in the different lakes is analyzed, and critical areas are identified.Agencia Nacional de Investigación e InnovaciónComisión FulbrigthUniversity of Illinois at Urbana-Champaign82 p.engUniversity of Illinois at Urbana-ChampaignBioaccumulationRisk analysisGreat LakesSostenibilidad en agua, energia y medio ambienteIngeniería CivilIngenierías y TecnologíasSPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKESTesis de maestríaAceptadoinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/masterThesisreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónMaciel, FernandaPeschel, JoshuaLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/142/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALPOS_FUL_2013_1_1.pdfapplication/pdf8422730https://redi.anii.org.uy/jspui/bitstream/20.500.12381/142/1/POS_FUL_2013_1_1.pdf62afe5d85da2d1e5ed6ebaeae23a8ee0MD5120.500.12381/1422020-09-25 15:08:46.706oai:redi.anii.org.uy:20.500.12381/142PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212020-09-25T18:08:46REDI - Agencia Nacional de Investigación e Innovaciónfalse |
spellingShingle | SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES Maciel, Fernanda Bioaccumulation Risk analysis Great Lakes Sostenibilidad en agua, energia y medio ambiente Ingeniería Civil Ingenierías y Tecnologías |
status_str | acceptedVersion |
title | SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES |
title_full | SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES |
title_fullStr | SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES |
title_full_unstemmed | SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES |
title_short | SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES |
title_sort | SPATIALLY DISTRIBUTED BIOACCUMULATION RISK ANALYSIS: A GIS-BASED TOOL AND A CASE STUDY OF POLYCHLORINATED BIPHENYLS IN THE GREAT LAKES |
topic | Bioaccumulation Risk analysis Great Lakes Sostenibilidad en agua, energia y medio ambiente Ingeniería Civil Ingenierías y Tecnologías |
url | http://hdl.handle.net/20.500.12381/142 |