DP-GEM

Visca, Ramiro

Resumen:

DP-GEM es una herramienta de Python creada para diseñar y ejecutar los complicados pipelines que conlleva transformar datos sensibles en datos privatizados probando diferentes mecanismos de privatización, con diferentes parámetros y además, probando los resultados contra una prueba de control para el estudio de la utilidad. La herramienta permite definir una serie de módulos que se ejecutan en cadena. El resultado de un módulo puede utilizarse como entrada del siguiente. Además, cada módulo puede ejecutarse con muchos parámetros diferentes, denominados ensayos, lo que da lugar a muchas salidas diferentes. Por esta razón, los módulos pueden tener submódulos y estos últimos se ejecutarán tantas veces como salidas den los ensayos del módulo principal. Este nivel de anidamiento continúa según sea necesario. DP-GEM es lo suficientemente flexible como para permitir la definición de los experimentos en un archivo .json, lo que ayuda con el requisito de replicación. Esto significa que los módulos y submódulos, sus códigos fuente y los parámetros pueden ser definidos en un formato json, incluyendo el número de ensayos por módulo, el anidamiento y los registros y archivos de salida. La herramienta también está integrada con Wandb[38] para registrar y guardar muchos de los resultados intermedios y finales en dicho servicio. Y finalmente DP-GEM puede integrarse con dos marcos de aprendizaje profundo Keras y PyTorch, así como con cualquier funcionalidad proporcionada por el paquete scikit-learn.


Detalles Bibliográficos
2021
Agencia Nacional de Investigación e Innovación
Differential Privacy
Deep Learning
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/479
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
_version_ 1814959256041947136
author Visca, Ramiro
author_facet Visca, Ramiro
author_role author
bitstream.checksum.fl_str_mv 2d97768b1a25a7df5a347bb58fd2d77f
ef8e52efc422648bc22d6242d045afdc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/479/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/479/1/dp-gem.zip
collection REDI
dc.creator.none.fl_str_mv Visca, Ramiro
dc.date.accessioned.none.fl_str_mv 2021-11-10T14:10:43Z
dc.date.available.none.fl_str_mv 2021-11-10T14:10:43Z
dc.date.issued.none.fl_str_mv 2021-08
dc.description.abstract.none.fl_txt_mv DP-GEM es una herramienta de Python creada para diseñar y ejecutar los complicados pipelines que conlleva transformar datos sensibles en datos privatizados probando diferentes mecanismos de privatización, con diferentes parámetros y además, probando los resultados contra una prueba de control para el estudio de la utilidad. La herramienta permite definir una serie de módulos que se ejecutan en cadena. El resultado de un módulo puede utilizarse como entrada del siguiente. Además, cada módulo puede ejecutarse con muchos parámetros diferentes, denominados ensayos, lo que da lugar a muchas salidas diferentes. Por esta razón, los módulos pueden tener submódulos y estos últimos se ejecutarán tantas veces como salidas den los ensayos del módulo principal. Este nivel de anidamiento continúa según sea necesario. DP-GEM es lo suficientemente flexible como para permitir la definición de los experimentos en un archivo .json, lo que ayuda con el requisito de replicación. Esto significa que los módulos y submódulos, sus códigos fuente y los parámetros pueden ser definidos en un formato json, incluyendo el número de ensayos por módulo, el anidamiento y los registros y archivos de salida. La herramienta también está integrada con Wandb[38] para registrar y guardar muchos de los resultados intermedios y finales en dicho servicio. Y finalmente DP-GEM puede integrarse con dos marcos de aprendizaje profundo Keras y PyTorch, así como con cualquier funcionalidad proporcionada por el paquete scikit-learn.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
dc.identifier.anii.es.fl_str_mv POS_ICT4V_2016_1_15, FSDA_1_2018_1_154419, FMV_1_2019_1_155913.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/479
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento 4.0 Internacional. (CC BY)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.none.fl_str_mv Ciencias Naturales y Exactas
Ciencias de la Computación e Información
dc.subject.es.fl_str_mv Differential Privacy
Deep Learning
dc.title.none.fl_str_mv DP-GEM
dc.type.es.fl_str_mv Otro
dc.type.none.fl_str_mv info:eu-repo/semantics/other
description DP-GEM es una herramienta de Python creada para diseñar y ejecutar los complicados pipelines que conlleva transformar datos sensibles en datos privatizados probando diferentes mecanismos de privatización, con diferentes parámetros y además, probando los resultados contra una prueba de control para el estudio de la utilidad. La herramienta permite definir una serie de módulos que se ejecutan en cadena. El resultado de un módulo puede utilizarse como entrada del siguiente. Además, cada módulo puede ejecutarse con muchos parámetros diferentes, denominados ensayos, lo que da lugar a muchas salidas diferentes. Por esta razón, los módulos pueden tener submódulos y estos últimos se ejecutarán tantas veces como salidas den los ensayos del módulo principal. Este nivel de anidamiento continúa según sea necesario. DP-GEM es lo suficientemente flexible como para permitir la definición de los experimentos en un archivo .json, lo que ayuda con el requisito de replicación. Esto significa que los módulos y submódulos, sus códigos fuente y los parámetros pueden ser definidos en un formato json, incluyendo el número de ensayos por módulo, el anidamiento y los registros y archivos de salida. La herramienta también está integrada con Wandb[38] para registrar y guardar muchos de los resultados intermedios y finales en dicho servicio. Y finalmente DP-GEM puede integrarse con dos marcos de aprendizaje profundo Keras y PyTorch, así como con cualquier funcionalidad proporcionada por el paquete scikit-learn.
eu_rights_str_mv openAccess
format other
id REDI_6c521327a483f4bfb7db4c4e35b230ea
identifier_str_mv POS_ICT4V_2016_1_15, FSDA_1_2018_1_154419, FMV_1_2019_1_155913.
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/479
publishDate 2021
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento 4.0 Internacional. (CC BY)
Acceso abierto
spelling Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2021-11-10T14:10:43Z2021-11-10T14:10:43Z2021-08https://hdl.handle.net/20.500.12381/479POS_ICT4V_2016_1_15, FSDA_1_2018_1_154419, FMV_1_2019_1_155913.DP-GEM es una herramienta de Python creada para diseñar y ejecutar los complicados pipelines que conlleva transformar datos sensibles en datos privatizados probando diferentes mecanismos de privatización, con diferentes parámetros y además, probando los resultados contra una prueba de control para el estudio de la utilidad. La herramienta permite definir una serie de módulos que se ejecutan en cadena. El resultado de un módulo puede utilizarse como entrada del siguiente. Además, cada módulo puede ejecutarse con muchos parámetros diferentes, denominados ensayos, lo que da lugar a muchas salidas diferentes. Por esta razón, los módulos pueden tener submódulos y estos últimos se ejecutarán tantas veces como salidas den los ensayos del módulo principal. Este nivel de anidamiento continúa según sea necesario. DP-GEM es lo suficientemente flexible como para permitir la definición de los experimentos en un archivo .json, lo que ayuda con el requisito de replicación. Esto significa que los módulos y submódulos, sus códigos fuente y los parámetros pueden ser definidos en un formato json, incluyendo el número de ensayos por módulo, el anidamiento y los registros y archivos de salida. La herramienta también está integrada con Wandb[38] para registrar y guardar muchos de los resultados intermedios y finales en dicho servicio. Y finalmente DP-GEM puede integrarse con dos marcos de aprendizaje profundo Keras y PyTorch, así como con cualquier funcionalidad proporcionada por el paquete scikit-learn.Agencia Nacional de Investigación e InnovaciónDifferential PrivacyDeep LearningCiencias Naturales y ExactasCiencias de la Computación e InformaciónDP-GEMOtroinfo:eu-repo/semantics/other//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e Informaciónreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónVisca, RamiroLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/479/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALdp-gem.zipdp-gem.zipDP-GEMapplication/octet-stream131495900https://redi.anii.org.uy/jspui/bitstream/20.500.12381/479/1/dp-gem.zipef8e52efc422648bc22d6242d045afdcMD5120.500.12381/4792021-11-10 11:10:45.556oai:redi.anii.org.uy:20.500.12381/479PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212021-11-10T14:10:45REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle DP-GEM
Visca, Ramiro
Differential Privacy
Deep Learning
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
title DP-GEM
title_full DP-GEM
title_fullStr DP-GEM
title_full_unstemmed DP-GEM
title_short DP-GEM
title_sort DP-GEM
topic Differential Privacy
Deep Learning
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
url https://hdl.handle.net/20.500.12381/479