On the Reliability Estimation of Stochastic Binary System

Cancela, Héctor - Murray, Leslie - Robledo, Franco - Romero, Pablo - Sartor, Pablo

Resumen:

A stochastic binary system is a multi-component on-off system subject to random independent failures on its components. After potential failures, the state of the subsystem is ruled by a logical function (called structure function) that determines whether the system is operational or not. Stochastic binary systems (SBS) serve as a natural generalization of network reliability analysis, where the goal is to find the probability of correct operation of the system (in terms of connectivity, network diameter or different measures of success). A particular subclass of interest is stochastic monotone binary systems (SMBS), which are characterized by non-decreasing structure. We explore the combinatorics of SBS, which provide building blocks for system reliability estimation, looking at minimal non-operational subsystems, called mincuts. One key concept to understand the underlying combinatorics of SBS is duality. As methods for exact evaluation take exponential time, we discuss the use of Monte Carlo algorithms. In particular, we discuss the F-Monte Carlo method for estimating the reliability polynomial for homogeneous SBS, the Recursive Variance Reduction (RVR) for SMBS, which builds upon the efficient determination of mincuts, and three additional methods that combine in different ways the well--known techniques of Permutation Monte Carlo and Splitting. These last three methods are based on a stochastic process called Creation Process, a temporal evolution of the SBS which is static by definition. All the methods are compared using different topologies, showing large efficiency gains over the basic Monte Carlo scheme.


Detalles Bibliográficos
2021
Agencia Nacional de Investigación e Innovación
Math-AMSUD
System Reliability
Stochastic Binary Systems
Permutation Monte Carlo
Splitting
Duality
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Matemáticas
Estadística y Probabilidad
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/645
Acceso abierto
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
_version_ 1814959253626028032
author Cancela, Héctor
author2 Murray, Leslie
Robledo, Franco
Romero, Pablo
Sartor, Pablo
author2_role author
author
author
author
author_facet Cancela, Héctor
Murray, Leslie
Robledo, Franco
Romero, Pablo
Sartor, Pablo
author_role author
bitstream.checksum.fl_str_mv 3c9d86d36485746409b4281a0893d729
76d5879a5366090f635e777f248751d8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/645/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/645/1/ITOR_v7.pdf
collection REDI
dc.creator.none.fl_str_mv Cancela, Héctor
Murray, Leslie
Robledo, Franco
Romero, Pablo
Sartor, Pablo
dc.date.accessioned.none.fl_str_mv 2022-10-17T13:33:01Z
dc.date.available.none.fl_str_mv 2022-10-17T13:33:01Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv A stochastic binary system is a multi-component on-off system subject to random independent failures on its components. After potential failures, the state of the subsystem is ruled by a logical function (called structure function) that determines whether the system is operational or not. Stochastic binary systems (SBS) serve as a natural generalization of network reliability analysis, where the goal is to find the probability of correct operation of the system (in terms of connectivity, network diameter or different measures of success). A particular subclass of interest is stochastic monotone binary systems (SMBS), which are characterized by non-decreasing structure. We explore the combinatorics of SBS, which provide building blocks for system reliability estimation, looking at minimal non-operational subsystems, called mincuts. One key concept to understand the underlying combinatorics of SBS is duality. As methods for exact evaluation take exponential time, we discuss the use of Monte Carlo algorithms. In particular, we discuss the F-Monte Carlo method for estimating the reliability polynomial for homogeneous SBS, the Recursive Variance Reduction (RVR) for SMBS, which builds upon the efficient determination of mincuts, and three additional methods that combine in different ways the well--known techniques of Permutation Monte Carlo and Splitting. These last three methods are based on a stochastic process called Creation Process, a temporal evolution of the SBS which is static by definition. All the methods are compared using different topologies, showing large efficiency gains over the basic Monte Carlo scheme.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
Math-AMSUD
dc.identifier.anii.es.fl_str_mv FCE_1_2019_1_156693
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/645
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv Wiley
dc.relation.es.fl_str_mv https://doi.org/10.1111/itor.13034
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.es.fl_str_mv International Transactions in Operations Research
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.none.fl_str_mv Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Matemáticas
Estadística y Probabilidad
dc.subject.es.fl_str_mv System Reliability
Stochastic Binary Systems
Permutation Monte Carlo
Splitting
Duality
dc.title.none.fl_str_mv On the Reliability Estimation of Stochastic Binary System
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es.fl_str_mv Enviado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description A stochastic binary system is a multi-component on-off system subject to random independent failures on its components. After potential failures, the state of the subsystem is ruled by a logical function (called structure function) that determines whether the system is operational or not. Stochastic binary systems (SBS) serve as a natural generalization of network reliability analysis, where the goal is to find the probability of correct operation of the system (in terms of connectivity, network diameter or different measures of success). A particular subclass of interest is stochastic monotone binary systems (SMBS), which are characterized by non-decreasing structure. We explore the combinatorics of SBS, which provide building blocks for system reliability estimation, looking at minimal non-operational subsystems, called mincuts. One key concept to understand the underlying combinatorics of SBS is duality. As methods for exact evaluation take exponential time, we discuss the use of Monte Carlo algorithms. In particular, we discuss the F-Monte Carlo method for estimating the reliability polynomial for homogeneous SBS, the Recursive Variance Reduction (RVR) for SMBS, which builds upon the efficient determination of mincuts, and three additional methods that combine in different ways the well--known techniques of Permutation Monte Carlo and Splitting. These last three methods are based on a stochastic process called Creation Process, a temporal evolution of the SBS which is static by definition. All the methods are compared using different topologies, showing large efficiency gains over the basic Monte Carlo scheme.
eu_rights_str_mv openAccess
format article
id REDI_6bb9dfa079514be708db077419daa6ea
identifier_str_mv FCE_1_2019_1_156693
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language eng
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/645
publishDate 2021
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
Acceso abierto
spelling Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)Acceso abiertoinfo:eu-repo/semantics/openAccess2022-10-17T13:33:01Z2022-10-17T13:33:01Z2021https://hdl.handle.net/20.500.12381/645FCE_1_2019_1_156693A stochastic binary system is a multi-component on-off system subject to random independent failures on its components. After potential failures, the state of the subsystem is ruled by a logical function (called structure function) that determines whether the system is operational or not. Stochastic binary systems (SBS) serve as a natural generalization of network reliability analysis, where the goal is to find the probability of correct operation of the system (in terms of connectivity, network diameter or different measures of success). A particular subclass of interest is stochastic monotone binary systems (SMBS), which are characterized by non-decreasing structure. We explore the combinatorics of SBS, which provide building blocks for system reliability estimation, looking at minimal non-operational subsystems, called mincuts. One key concept to understand the underlying combinatorics of SBS is duality. As methods for exact evaluation take exponential time, we discuss the use of Monte Carlo algorithms. In particular, we discuss the F-Monte Carlo method for estimating the reliability polynomial for homogeneous SBS, the Recursive Variance Reduction (RVR) for SMBS, which builds upon the efficient determination of mincuts, and three additional methods that combine in different ways the well--known techniques of Permutation Monte Carlo and Splitting. These last three methods are based on a stochastic process called Creation Process, a temporal evolution of the SBS which is static by definition. All the methods are compared using different topologies, showing large efficiency gains over the basic Monte Carlo scheme.Agencia Nacional de Investigación e InnovaciónMath-AMSUDengWileyhttps://doi.org/10.1111/itor.13034International Transactions in Operations Researchreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónSystem ReliabilityStochastic Binary SystemsPermutation Monte CarloSplittingDualityCiencias Naturales y ExactasCiencias de la Computación e InformaciónMatemáticasEstadística y ProbabilidadOn the Reliability Estimation of Stochastic Binary SystemArtículoEnviadoinfo:eu-repo/semantics/submittedVersioninfo:eu-repo/semantics/articleUniversidad de la RepúblicaUniversidad Nacional de RosarioUniversidad de Montevideo//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e Información//Ciencias Naturales y Exactas/Matemáticas/Estadística y ProbabilidadCancela, HéctorMurray, LeslieRobledo, FrancoRomero, PabloSartor, PabloLICENSElicense.txtlicense.txttext/plain; charset=utf-84944https://redi.anii.org.uy/jspui/bitstream/20.500.12381/645/2/license.txt3c9d86d36485746409b4281a0893d729MD52ORIGINALITOR_v7.pdfITOR_v7.pdfborrador enviadoapplication/pdf390891https://redi.anii.org.uy/jspui/bitstream/20.500.12381/645/1/ITOR_v7.pdf76d5879a5366090f635e777f248751d8MD5120.500.12381/6452022-10-17 10:33:02.938oai:redi.anii.org.uy:20.500.12381/645PHA+PGI+QUNVRVJETyBERSBDRVNJT04gTk8gRVhDTFVTSVZBIERFIERFUkVDSE9TPC9iPjwvcD4KCjxwPkFjZXB0YW5kbyBsYSBjZXNpw7NuIGRlIGRlcmVjaG9zIGVsIHVzdWFyaW8gREVDTEFSQSBxdWUgb3N0ZW50YSBsYSBjb25kaWNpw7NuIGRlIGF1dG9yIGVuIGVsIHNlbnRpZG8gcXVlIG90b3JnYSBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSBzb2JyZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+Cgo8cD5Db24gZWwgZmluIGRlIGRhciBsYSBtw6F4aW1hIGRpZnVzacOzbiBhIGxhIG9icmEgYSB0cmF2w6lzIGRlbCByZXBvc2l0b3JpbyBkZSBhY2Nlc28gYWJpZXJ0byBSRURJIChodHRwczovL3JlZGkuYW5paS5vcmcudXkpLCBlbCBBVVRPUiBDRURFIGEgPGI+QWdlbmNpYSBOYWNpb25hbCBkZSBJbnZlc3RpZ2FjacOzbiBlIElubm92YWNpw7NuPC9iPiAoPGI+QU5JSTwvYj4pLCBkZSBmb3JtYSBncmF0dWl0YSB5IE5PIEVYQ0xVU0lWQSwgY29uIGNhcsOhY3RlciBpcnJldm9jYWJsZSBlIGlsaW1pdGFkbyBlbiBlbCB0aWVtcG8geSBjb24gw6FtYml0byBtdW5kaWFsLCBsb3MgZGVyZWNob3MgZGUgcmVwcm9kdWNjacOzbiwgZGUgZGlzdHJpYnVjacOzbiwgZGUgY29tdW5pY2FjacOzbiBww7pibGljYSwgaW5jbHVpZG8gZWwgZGVyZWNobyBkZSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZWxlY3Ryw7NuaWNhLCBwYXJhIHF1ZSBwdWVkYSBzZXIgdXRpbGl6YWRhIGRlIGZvcm1hIGxpYnJlIHkgZ3JhdHVpdGEgcG9yIHRvZG9zIGxvcyBxdWUgbG8gZGVzZWVuLjwvcD4KCjxwPkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOjwvcD4KCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgPGI+QU5JSTwvYj46PC9wPgoKPHVsPgo8bGkgdmFsdWU9KGEpPlRyYW5zZm9ybWFyIGxhIG9icmEgZW4gbGEgbWVkaWRhIGVuIHF1ZSBzZWEgbmVjZXNhcmlvIHBhcmEgYWRhcHRhcmxhIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hIHN1c2NlcHRpYmxlIGRlIGluY29ycG9yYWNpw7NuIGEgSW50ZXJuZXQ7IHJlYWxpemFyIGxhcyBhZGFwdGFjaW9uZXMgbmVjZXNhcmlhcyBwYXJhIGhhY2VyIHBvc2libGUgc3UgYWNjZXNvIHkgdmlzdWFsaXphY2nDs24gcGVybWFuZW50ZSwgYcO6biBwb3IgcGFydGUgZGUgcGVyc29uYXMgY29uIGRpc2NhcGFjaWRhZCwgcmVhbGl6YXIgbGFzIG1pZ3JhY2lvbmVzIGRlIGZvcm1hdG9zIHBhcmEgYXNlZ3VyYXIgbGEgcHJlc2VydmFjacOzbiBhIGxhcmdvIHBsYXpvLCBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24gbyBkZSBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIEVuIG5pbmfDum4gY2FzbyBkaWNoYXMgbW9kaWZpY2FjaW9uZXMgaW1wbGljYXLDoW4gYWR1bHRlcmFjaW9uZXMgZW4gZWwgY29udGVuaWRvIGRlIGxhIG9icmEuPC9saT4gCjxsaSB2YWx1ZT0oYik+UmVwcm9kdWNpciBsYSBvYnJhIGVuIHVuIG1lZGlvIGRpZ2l0YWwgcGFyYSBzdSBpbmNvcnBvcmFjacOzbiBhIHNpc3RlbWFzIGRlIGLDunNxdWVkYSB5IHJlY3VwZXJhY2nDs24sIGluY2x1eWVuZG8gZWwgZGVyZWNobyBhIHJlcHJvZHVjaXIgeSBhbG1hY2VuYXJsYSBlbiBzZXJ2aWRvcmVzIHUgb3Ryb3MgbWVkaW9zIGRpZ2l0YWxlcyBhIGxvcyBlZmVjdG9zIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uPC9saT4gCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gCjxsaSB2YWx1ZT0oZCk+UmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0Lgo8L3VsPgoKPHA+RW4gdmlydHVkIGRlbCBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZvIGRlIGxhIGNlc2nDs24sIGVsIEF1dG9yIGNvbnNlcnZhIHRvZG9zIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhLCB5IHBvZHLDoSBwb25lcmxhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBlc3RhIHkgZW4gcG9zdGVyaW9yZXMgdmVyc2lvbmVzLCBhIHRyYXbDqXMgZGUgbG9zIG1lZGlvcyBxdWUgZXN0aW1lIG9wb3J0dW5vcy48L3A+Cgo8cD5FbCBBdXRvciBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhbiBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3RybyB5IGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhIG9icmEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MsIG5pIGVzIGRpc2NyaW1pbmF0b3Jpby4gPGI+QU5JSTwvYj4gZXN0YXLDoSBleGVudGEgZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+Cgo8cD5MYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS48L3A+Cgo8cD5FbCBBdXRvciwgY29tbyBnYXJhbnRlIGRlIGxhIGF1dG9yw61hIGRlIGxhIG9icmEgeSBlbiByZWxhY2nDs24gYSBsYSBtaXNtYSwgZGVjbGFyYSBxdWUgPGI+QU5JSTwvYj4gc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMYSA8Yj5BTklJPC9iPiBlc3RhcsOhIGV4ZW50YSBkZSBlamVyY2l0YXIgYWNjaW9uZXMgbGVnYWxlcyBlbiBub21icmUgZGVsIEF1dG9yIGVuIGVsIHN1cHVlc3RvIGRlIGluZnJhY2Npb25lcyBhIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZXJpdmFkb3MgZGVsIGRlcMOzc2l0byB5IGFyY2hpdm8gZGUgbGEgb2JyYS48L3A+Cgo8cD48Yj5BTklJPC9iPiBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4KCjxwPkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyA8Yj5BTklJPC9iPiBwb2Ryw6EgcmV0aXJhciBvIGludmlzaWJpbGl6YXIgbGEgb2JyYSBkZSBSRURJLCBwcmV2aWEgbm90aWZpY2FjacOzbiBhbCBBdXRvciwgZW4gc3VwdWVzdG9zIHN1ZmljaWVudGVtZW50ZSBqdXN0aWZpY2Fkb3MsIG8gZW4gY2FzbyBkZSByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLjwvcD4KGobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212022-10-17T13:33:02REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle On the Reliability Estimation of Stochastic Binary System
Cancela, Héctor
System Reliability
Stochastic Binary Systems
Permutation Monte Carlo
Splitting
Duality
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Matemáticas
Estadística y Probabilidad
status_str submittedVersion
title On the Reliability Estimation of Stochastic Binary System
title_full On the Reliability Estimation of Stochastic Binary System
title_fullStr On the Reliability Estimation of Stochastic Binary System
title_full_unstemmed On the Reliability Estimation of Stochastic Binary System
title_short On the Reliability Estimation of Stochastic Binary System
title_sort On the Reliability Estimation of Stochastic Binary System
topic System Reliability
Stochastic Binary Systems
Permutation Monte Carlo
Splitting
Duality
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Matemáticas
Estadística y Probabilidad
url https://hdl.handle.net/20.500.12381/645