Informe final del proyecto: Creación de algoritmos utilizando técnicas de clasificación supervisada y no supervisada para el diagnóstico de enfermedades cardiovasculares en una población de adultos mayores de bajos recursos en Uruguay
Resumen:
El avance de los algoritmos de aprendizaje automático ha posibilitado la aplicación de nuevos métodos con capacidad diagnóstica igual a su contraparte humana, permitiendo el alcance a una mayor cantidad de usuarios, superando las restricciones de recursos limitados, en menor tiempo y garantizando la reproducibilidad de los resultados. Los algoritmos de aprendizaje automático son susceptibles a los datos con que se los entrena y sus resultados pueden variar si los datos a los que se los aplica no provienen de la misma población que se utilizó para entrenar los algoritmos. Ésta es una de las razones de relevancia para la generación de capacidades locales en la creación y evaluación de las nuevas técnicas, especialmente en el área de la salud donde importa tanto el resultado como la interpretación del método por el que se llegó al mismo. La presente investigación tiene como propósito la generación de algoritmos de aprendizaje automático para la identificación de la patología cardíaca, fibrilación auricular, a partir de datos de la señal electrocardiográfica de una sola derivación con un dispositivo móvil de tecnología electrónica. La fibrilación auricular (FA) es la arritmia sostenida más frecuente en el adulto, y su prevalencia aumenta con la edad. Según el informe “Global Burden of Diseases, Injuries, and Risk Factors Study” de 2010 se estimó que en este año 33,5 millones de individuos presentaban FA, constituyendo aproximadamente el 0,5% de la población mundial. Su incidencia y prevalencia van en aumento. Esto puede explicarse en gran medida por el envejecimiento de la población y el aumento de la comorbilidad. La FA es la primera causa de internación por arritmia cardíaca y existe evidencia de que se viene incrementando como causa de internación. Las múltiples internaciones generan deterioro en la calidad de vida en una población especialmente vulnerable, aumentando los costos en salud.
2022 | |
Agencia Nacional de Investigación e Innovación | |
Detección de arritmias Aprendizaje profundo Telemedicina Ciencias Médicas y de la Salud Medicina Clínica Sistemas Cardíaco y Cardiovascular |
|
Español | |
Agencia Nacional de Investigación e Innovación | |
REDI | |
https://hdl.handle.net/20.500.12381/3142 | |
Acceso abierto | |
Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA) |
_version_ | 1814959268647927808 |
---|---|
author | Álvarez Vaz, Ramón |
author2 | Scavino, Marco Muñoz, Matias Luraghi Lopez, Lorena Elizabeth Castrillejo, Andrés Estragó Mérola, Virginia Sandra |
author2_role | author author author author author |
author_facet | Álvarez Vaz, Ramón Scavino, Marco Muñoz, Matias Luraghi Lopez, Lorena Elizabeth Castrillejo, Andrés Estragó Mérola, Virginia Sandra |
author_role | author |
bitstream.checksum.fl_str_mv | da857452657dba1dd76df7539bb57897 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/3142/1/Informe_final_publicable_FSDA_1_2018_1_154651.pdf |
collection | REDI |
dc.creator.none.fl_str_mv | Álvarez Vaz, Ramón Scavino, Marco Muñoz, Matias Luraghi Lopez, Lorena Elizabeth Castrillejo, Andrés Estragó Mérola, Virginia Sandra |
dc.date.accessioned.none.fl_str_mv | 2023-01-16T16:44:08Z |
dc.date.available.none.fl_str_mv | 2023-01-16T16:44:08Z |
dc.date.issued.none.fl_str_mv | 2022-03-02 |
dc.description.abstract.none.fl_txt_mv | El avance de los algoritmos de aprendizaje automático ha posibilitado la aplicación de nuevos métodos con capacidad diagnóstica igual a su contraparte humana, permitiendo el alcance a una mayor cantidad de usuarios, superando las restricciones de recursos limitados, en menor tiempo y garantizando la reproducibilidad de los resultados. Los algoritmos de aprendizaje automático son susceptibles a los datos con que se los entrena y sus resultados pueden variar si los datos a los que se los aplica no provienen de la misma población que se utilizó para entrenar los algoritmos. Ésta es una de las razones de relevancia para la generación de capacidades locales en la creación y evaluación de las nuevas técnicas, especialmente en el área de la salud donde importa tanto el resultado como la interpretación del método por el que se llegó al mismo. La presente investigación tiene como propósito la generación de algoritmos de aprendizaje automático para la identificación de la patología cardíaca, fibrilación auricular, a partir de datos de la señal electrocardiográfica de una sola derivación con un dispositivo móvil de tecnología electrónica. La fibrilación auricular (FA) es la arritmia sostenida más frecuente en el adulto, y su prevalencia aumenta con la edad. Según el informe “Global Burden of Diseases, Injuries, and Risk Factors Study” de 2010 se estimó que en este año 33,5 millones de individuos presentaban FA, constituyendo aproximadamente el 0,5% de la población mundial. Su incidencia y prevalencia van en aumento. Esto puede explicarse en gran medida por el envejecimiento de la población y el aumento de la comorbilidad. La FA es la primera causa de internación por arritmia cardíaca y existe evidencia de que se viene incrementando como causa de internación. Las múltiples internaciones generan deterioro en la calidad de vida en una población especialmente vulnerable, aumentando los costos en salud. |
dc.description.sponsorship.none.fl_txt_mv | Agencia Nacional de Investigación e Innovación |
dc.identifier.anii.es.fl_str_mv | FSDA_1_2018_1_154651 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12381/3142 |
dc.language.iso.none.fl_str_mv | spa |
dc.publisher.es.fl_str_mv | Agencia Nacional de Investigación e Innovación |
dc.relation.es.fl_str_mv | https://hdl.handle.net/20.500.12381/487 https://hdl.handle.net/20.500.12381/491 http://hdl.handle.net/11086/18271 https://hdl.handle.net/20.500.12381/486 https://hdl.handle.net/20.500.12008/30422 https://hdl.handle.net/20.500.12381/490 |
dc.rights.es.fl_str_mv | Acceso abierto |
dc.rights.license.none.fl_str_mv | Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:REDI instname:Agencia Nacional de Investigación e Innovación instacron:Agencia Nacional de Investigación e Innovación |
dc.subject.anii.none.fl_str_mv | Ciencias Médicas y de la Salud Medicina Clínica Sistemas Cardíaco y Cardiovascular |
dc.subject.es.fl_str_mv | Detección de arritmias Aprendizaje profundo Telemedicina |
dc.title.none.fl_str_mv | Informe final del proyecto: Creación de algoritmos utilizando técnicas de clasificación supervisada y no supervisada para el diagnóstico de enfermedades cardiovasculares en una población de adultos mayores de bajos recursos en Uruguay |
dc.type.es.fl_str_mv | Reporte técnico |
dc.type.none.fl_str_mv | info:eu-repo/semantics/report |
dc.type.version.es.fl_str_mv | Aceptado |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | El avance de los algoritmos de aprendizaje automático ha posibilitado la aplicación de nuevos métodos con capacidad diagnóstica igual a su contraparte humana, permitiendo el alcance a una mayor cantidad de usuarios, superando las restricciones de recursos limitados, en menor tiempo y garantizando la reproducibilidad de los resultados. Los algoritmos de aprendizaje automático son susceptibles a los datos con que se los entrena y sus resultados pueden variar si los datos a los que se los aplica no provienen de la misma población que se utilizó para entrenar los algoritmos. Ésta es una de las razones de relevancia para la generación de capacidades locales en la creación y evaluación de las nuevas técnicas, especialmente en el área de la salud donde importa tanto el resultado como la interpretación del método por el que se llegó al mismo. La presente investigación tiene como propósito la generación de algoritmos de aprendizaje automático para la identificación de la patología cardíaca, fibrilación auricular, a partir de datos de la señal electrocardiográfica de una sola derivación con un dispositivo móvil de tecnología electrónica. La fibrilación auricular (FA) es la arritmia sostenida más frecuente en el adulto, y su prevalencia aumenta con la edad. Según el informe “Global Burden of Diseases, Injuries, and Risk Factors Study” de 2010 se estimó que en este año 33,5 millones de individuos presentaban FA, constituyendo aproximadamente el 0,5% de la población mundial. Su incidencia y prevalencia van en aumento. Esto puede explicarse en gran medida por el envejecimiento de la población y el aumento de la comorbilidad. La FA es la primera causa de internación por arritmia cardíaca y existe evidencia de que se viene incrementando como causa de internación. Las múltiples internaciones generan deterioro en la calidad de vida en una población especialmente vulnerable, aumentando los costos en salud. |
eu_rights_str_mv | openAccess |
format | report |
id | REDI_6ab2139e2b9cdfce7761da7780bc0670 |
identifier_str_mv | FSDA_1_2018_1_154651 |
instacron_str | Agencia Nacional de Investigación e Innovación |
institution | Agencia Nacional de Investigación e Innovación |
instname_str | Agencia Nacional de Investigación e Innovación |
language | spa |
network_acronym_str | REDI |
network_name_str | REDI |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/3142 |
publishDate | 2022 |
reponame_str | REDI |
repository.mail.fl_str_mv | jmaldini@anii.org.uy |
repository.name.fl_str_mv | REDI - Agencia Nacional de Investigación e Innovación |
repository_id_str | 9421 |
rights_invalid_str_mv | Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA) Acceso abierto |
spelling | Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. (CC BY-NC-SA)Acceso abiertoinfo:eu-repo/semantics/openAccess2023-01-16T16:44:08Z2023-01-16T16:44:08Z2022-03-02https://hdl.handle.net/20.500.12381/3142FSDA_1_2018_1_154651El avance de los algoritmos de aprendizaje automático ha posibilitado la aplicación de nuevos métodos con capacidad diagnóstica igual a su contraparte humana, permitiendo el alcance a una mayor cantidad de usuarios, superando las restricciones de recursos limitados, en menor tiempo y garantizando la reproducibilidad de los resultados. Los algoritmos de aprendizaje automático son susceptibles a los datos con que se los entrena y sus resultados pueden variar si los datos a los que se los aplica no provienen de la misma población que se utilizó para entrenar los algoritmos. Ésta es una de las razones de relevancia para la generación de capacidades locales en la creación y evaluación de las nuevas técnicas, especialmente en el área de la salud donde importa tanto el resultado como la interpretación del método por el que se llegó al mismo. La presente investigación tiene como propósito la generación de algoritmos de aprendizaje automático para la identificación de la patología cardíaca, fibrilación auricular, a partir de datos de la señal electrocardiográfica de una sola derivación con un dispositivo móvil de tecnología electrónica. La fibrilación auricular (FA) es la arritmia sostenida más frecuente en el adulto, y su prevalencia aumenta con la edad. Según el informe “Global Burden of Diseases, Injuries, and Risk Factors Study” de 2010 se estimó que en este año 33,5 millones de individuos presentaban FA, constituyendo aproximadamente el 0,5% de la población mundial. Su incidencia y prevalencia van en aumento. Esto puede explicarse en gran medida por el envejecimiento de la población y el aumento de la comorbilidad. La FA es la primera causa de internación por arritmia cardíaca y existe evidencia de que se viene incrementando como causa de internación. Las múltiples internaciones generan deterioro en la calidad de vida en una población especialmente vulnerable, aumentando los costos en salud.Agencia Nacional de Investigación e InnovaciónspaAgencia Nacional de Investigación e Innovaciónhttps://hdl.handle.net/20.500.12381/487https://hdl.handle.net/20.500.12381/491http://hdl.handle.net/11086/18271https://hdl.handle.net/20.500.12381/486https://hdl.handle.net/20.500.12008/30422https://hdl.handle.net/20.500.12381/490Detección de arritmiasAprendizaje profundoTelemedicinaCiencias Médicas y de la SaludMedicina ClínicaSistemas Cardíaco y CardiovascularInforme final del proyecto: Creación de algoritmos utilizando técnicas de clasificación supervisada y no supervisada para el diagnóstico de enfermedades cardiovasculares en una población de adultos mayores de bajos recursos en UruguayReporte técnicoAceptadoinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/reportUniversidad de la República. Facultad de Ciencias Económicas y de Administración//Ciencias Médicas y de la Salud/Medicina Clínica/Sistemas Cardíaco y Cardiovascularreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónÁlvarez Vaz, RamónScavino, MarcoMuñoz, MatiasLuraghi Lopez, Lorena ElizabethCastrillejo, AndrésEstragó Mérola, Virginia SandraORIGINALInforme_final_publicable_FSDA_1_2018_1_154651.pdfInforme_final_publicable_FSDA_1_2018_1_154651.pdfapplication/pdf155983https://redi.anii.org.uy/jspui/bitstream/20.500.12381/3142/1/Informe_final_publicable_FSDA_1_2018_1_154651.pdfda857452657dba1dd76df7539bb57897MD5120.500.12381/31422023-01-17 13:46:59.53oai:redi.anii.org.uy:20.500.12381/3142Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212023-01-17T16:46:59REDI - Agencia Nacional de Investigación e Innovaciónfalse |
spellingShingle | Informe final del proyecto: Creación de algoritmos utilizando técnicas de clasificación supervisada y no supervisada para el diagnóstico de enfermedades cardiovasculares en una población de adultos mayores de bajos recursos en Uruguay Álvarez Vaz, Ramón Detección de arritmias Aprendizaje profundo Telemedicina Ciencias Médicas y de la Salud Medicina Clínica Sistemas Cardíaco y Cardiovascular |
status_str | acceptedVersion |
title | Informe final del proyecto: Creación de algoritmos utilizando técnicas de clasificación supervisada y no supervisada para el diagnóstico de enfermedades cardiovasculares en una población de adultos mayores de bajos recursos en Uruguay |
title_full | Informe final del proyecto: Creación de algoritmos utilizando técnicas de clasificación supervisada y no supervisada para el diagnóstico de enfermedades cardiovasculares en una población de adultos mayores de bajos recursos en Uruguay |
title_fullStr | Informe final del proyecto: Creación de algoritmos utilizando técnicas de clasificación supervisada y no supervisada para el diagnóstico de enfermedades cardiovasculares en una población de adultos mayores de bajos recursos en Uruguay |
title_full_unstemmed | Informe final del proyecto: Creación de algoritmos utilizando técnicas de clasificación supervisada y no supervisada para el diagnóstico de enfermedades cardiovasculares en una población de adultos mayores de bajos recursos en Uruguay |
title_short | Informe final del proyecto: Creación de algoritmos utilizando técnicas de clasificación supervisada y no supervisada para el diagnóstico de enfermedades cardiovasculares en una población de adultos mayores de bajos recursos en Uruguay |
title_sort | Informe final del proyecto: Creación de algoritmos utilizando técnicas de clasificación supervisada y no supervisada para el diagnóstico de enfermedades cardiovasculares en una población de adultos mayores de bajos recursos en Uruguay |
topic | Detección de arritmias Aprendizaje profundo Telemedicina Ciencias Médicas y de la Salud Medicina Clínica Sistemas Cardíaco y Cardiovascular |
url | https://hdl.handle.net/20.500.12381/3142 |