Mining arguments in scientific abstracts: Application to argumentative quality assessment

Accuosto, Pablo

Supervisor(es): Saggion, Horacio

Resumen:

Argument mining consists in the automatic identification of argumentative structures in natural language, a task that has been recognized as particularly challenging in the scientific domain. In this work we propose SciARG, a new annotation scheme, and apply it to the identification of argumentative units and relations in abstracts in two scientific disciplines: computational linguistics and biomedicine, which allows us to assess the applicability of our scheme to different knowledge fields. We use our annotated corpus to train and evaluate argument mining models in various experimental settings, including single and multi-task learning. We investigate the possibility of leveraging existing annotations, including discourse relations and rhetorical roles of sentences, to improve the performance of argument mining models. In particular, we explore the potential offered by a sequential transfer- learning approach in which supplementary training tasks are used to fine-tune pre-trained parameter-rich language models. Finally, we analyze the practical usability of the automatically-extracted components and relations for the prediction of argumentative quality dimensions of scientific abstracts.


Detalles Bibliográficos
2021
Agencia Nacional de Investigación e Innovación
Ministerio de Economía, Industria y Competitividad (España)
argument mining
argumentative quality assessment
annotation scheme
scientific discourse
machine learning
transfer learning
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Ingeniería y Tecnología
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
Ingeniería de Sistemas y Comunicaciones
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/495
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
_version_ 1814959264020561920
author Accuosto, Pablo
author_facet Accuosto, Pablo
author_role author
bitstream.checksum.fl_str_mv 2d97768b1a25a7df5a347bb58fd2d77f
4b099d7d31ed95b41c9423e71f5b2d7c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/495/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/495/1/PhD_Thesis_PabloAccuosto.pdf
collection REDI
dc.creator.advisor.none.fl_str_mv Saggion, Horacio
dc.creator.none.fl_str_mv Accuosto, Pablo
dc.date.accessioned.none.fl_str_mv 2021-12-13T20:03:00Z
dc.date.available.none.fl_str_mv 2021-12-13T20:03:00Z
dc.date.issued.none.fl_str_mv 2021-11-26
dc.description.abstract.none.fl_txt_mv Argument mining consists in the automatic identification of argumentative structures in natural language, a task that has been recognized as particularly challenging in the scientific domain. In this work we propose SciARG, a new annotation scheme, and apply it to the identification of argumentative units and relations in abstracts in two scientific disciplines: computational linguistics and biomedicine, which allows us to assess the applicability of our scheme to different knowledge fields. We use our annotated corpus to train and evaluate argument mining models in various experimental settings, including single and multi-task learning. We investigate the possibility of leveraging existing annotations, including discourse relations and rhetorical roles of sentences, to improve the performance of argument mining models. In particular, we explore the potential offered by a sequential transfer- learning approach in which supplementary training tasks are used to fine-tune pre-trained parameter-rich language models. Finally, we analyze the practical usability of the automatically-extracted components and relations for the prediction of argumentative quality dimensions of scientific abstracts.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
Ministerio de Economía, Industria y Competitividad (España)
dc.identifier.anii.es.fl_str_mv POS_EXT_2016_1_135299
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/495
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv Universitat Pompeu Fabra
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento 4.0 Internacional. (CC BY)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.none.fl_str_mv Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Ingeniería y Tecnología
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
Ingeniería de Sistemas y Comunicaciones
dc.subject.es.fl_str_mv argument mining
argumentative quality assessment
annotation scheme
scientific discourse
machine learning
transfer learning
dc.title.none.fl_str_mv Mining arguments in scientific abstracts: Application to argumentative quality assessment
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.es.fl_str_mv Publicado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Argument mining consists in the automatic identification of argumentative structures in natural language, a task that has been recognized as particularly challenging in the scientific domain. In this work we propose SciARG, a new annotation scheme, and apply it to the identification of argumentative units and relations in abstracts in two scientific disciplines: computational linguistics and biomedicine, which allows us to assess the applicability of our scheme to different knowledge fields. We use our annotated corpus to train and evaluate argument mining models in various experimental settings, including single and multi-task learning. We investigate the possibility of leveraging existing annotations, including discourse relations and rhetorical roles of sentences, to improve the performance of argument mining models. In particular, we explore the potential offered by a sequential transfer- learning approach in which supplementary training tasks are used to fine-tune pre-trained parameter-rich language models. Finally, we analyze the practical usability of the automatically-extracted components and relations for the prediction of argumentative quality dimensions of scientific abstracts.
eu_rights_str_mv openAccess
format doctoralThesis
id REDI_4cd1fb70510a418f3715a69b1849a34e
identifier_str_mv POS_EXT_2016_1_135299
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language eng
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/495
publishDate 2021
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento 4.0 Internacional. (CC BY)
Acceso abierto
spelling Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2021-12-13T20:03:00Z2021-12-13T20:03:00Z2021-11-26https://hdl.handle.net/20.500.12381/495POS_EXT_2016_1_135299Argument mining consists in the automatic identification of argumentative structures in natural language, a task that has been recognized as particularly challenging in the scientific domain. In this work we propose SciARG, a new annotation scheme, and apply it to the identification of argumentative units and relations in abstracts in two scientific disciplines: computational linguistics and biomedicine, which allows us to assess the applicability of our scheme to different knowledge fields. We use our annotated corpus to train and evaluate argument mining models in various experimental settings, including single and multi-task learning. We investigate the possibility of leveraging existing annotations, including discourse relations and rhetorical roles of sentences, to improve the performance of argument mining models. In particular, we explore the potential offered by a sequential transfer- learning approach in which supplementary training tasks are used to fine-tune pre-trained parameter-rich language models. Finally, we analyze the practical usability of the automatically-extracted components and relations for the prediction of argumentative quality dimensions of scientific abstracts.Agencia Nacional de Investigación e InnovaciónMinisterio de Economía, Industria y Competitividad (España)engUniversitat Pompeu Fabraargument miningargumentative quality assessmentannotation schemescientific discoursemachine learningtransfer learningCiencias Naturales y ExactasCiencias de la Computación e InformaciónIngeniería y TecnologíaIngeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la InformaciónIngeniería de Sistemas y ComunicacionesMining arguments in scientific abstracts: Application to argumentative quality assessmentTesis de doctoradoPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e Información//Ingeniería y Tecnología/Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información/Ingeniería de Sistemas y Comunicacionesreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónAccuosto, PabloSaggion, HoracioLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/495/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALPhD_Thesis_PabloAccuosto.pdfPhD_Thesis_PabloAccuosto.pdfTesis de doctorado - Pablo Accuostoapplication/pdf19633212https://redi.anii.org.uy/jspui/bitstream/20.500.12381/495/1/PhD_Thesis_PabloAccuosto.pdf4b099d7d31ed95b41c9423e71f5b2d7cMD5120.500.12381/4952021-12-13 17:03:01.715oai:redi.anii.org.uy:20.500.12381/495PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212021-12-13T20:03:01REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle Mining arguments in scientific abstracts: Application to argumentative quality assessment
Accuosto, Pablo
argument mining
argumentative quality assessment
annotation scheme
scientific discourse
machine learning
transfer learning
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Ingeniería y Tecnología
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
Ingeniería de Sistemas y Comunicaciones
status_str publishedVersion
title Mining arguments in scientific abstracts: Application to argumentative quality assessment
title_full Mining arguments in scientific abstracts: Application to argumentative quality assessment
title_fullStr Mining arguments in scientific abstracts: Application to argumentative quality assessment
title_full_unstemmed Mining arguments in scientific abstracts: Application to argumentative quality assessment
title_short Mining arguments in scientific abstracts: Application to argumentative quality assessment
title_sort Mining arguments in scientific abstracts: Application to argumentative quality assessment
topic argument mining
argumentative quality assessment
annotation scheme
scientific discourse
machine learning
transfer learning
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Ingeniería y Tecnología
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
Ingeniería de Sistemas y Comunicaciones
url https://hdl.handle.net/20.500.12381/495