Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches

Rosas, Juan Eduardo - Ale, Lucas - Rebollo, Inés - Scheffel, Sheila - Aguilar, Ignacio - Molina, Federico - Pérez, Fernando

Resumen:

As a major rice exporter, Uruguay must maximize its competitivity with higher yield, quality and innocuity, and lower inputs, in an increasingly instable environment. To timely meet these needs, INIA’s public rice breeding program (IRBP) is optimizing its cultivar development pipeline by incorporating molecular and quantitative genetics approaches that will enable to increase the selection accuracy and intensity, and to shorten the breeding cycle. Different strategies are applied depending on the complexity of the target trait in the breeding germplasm: 1) molecular assisted selection (MAS) for screening and introgression of valuable alleles for oligogenic traits, for increasing selection intensity and reducing population size for field trials; 2) genome-wide association studies (GWAS) for traits with unknow genetic architecture in our germplasm; and 3) mixed models integrating pedigree, genomic, and weather data for prediction complex traits under favorable and unfavorable environments for increasing selection accuracy. For MAS, SNP markers have been validated and applied for blast resistance, herbicide tolerance, amylose content and fragrance. GWAS were performed in indica and tropical japonica advanced breeding germplasm for arsenic grain content, tolerance to low temperature at vegetative and reproductive stages, and quantitative blast resistance. Several new and known QTL were discovered in the IRBP germplasm, and the usefulness of MAS for these traits was assessed. Finally, prediction of breeding value for yield is being implemented combining historic phenotypic and pedigree records with environmental data. First analyses of multi-year and multi-location analyses are showing promising results for increasing selection accuracy and characterizing genotype by environment interactions. Combined, these molecular and quantitative approaches are contributing to optimize the IRBP, and will accelerate the delivery of best cultivars for Uruguayan rice farmers.


Detalles Bibliográficos
2020
Instituto Nacional de Investigación Agropecuaria
Agencia Nacional de Investigación e Innovación
breeding
MAS
GWAS
Genomic selection
Ciencias Naturales y Exactas
Ciencias Biológicas
Genética y Herencia
Ciencias Agrícolas
Biotecnología Agropecuaria
Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc.
Agricultura, Silvicultura y Pesca
Agronomía, reproducción y protección de plantas
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/451
http://www.ainfo.inia.uy/digital/bitstream/item/14248/1/IRTC-2020-Rosas-1-Abstract.pdf
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
_version_ 1814959254761635840
author Rosas, Juan Eduardo
author2 Ale, Lucas
Rebollo, Inés
Scheffel, Sheila
Aguilar, Ignacio
Molina, Federico
Pérez, Fernando
author2_role author
author
author
author
author
author
author_facet Rosas, Juan Eduardo
Ale, Lucas
Rebollo, Inés
Scheffel, Sheila
Aguilar, Ignacio
Molina, Federico
Pérez, Fernando
author_role author
bitstream.checksum.fl_str_mv 2d97768b1a25a7df5a347bb58fd2d77f
8f75964a211df2e46d17a6e1fe008f1b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/451/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/451/1/IRTC-2020-Rosas-1-Abstract.pdf
collection REDI
dc.creator.none.fl_str_mv Rosas, Juan Eduardo
Ale, Lucas
Rebollo, Inés
Scheffel, Sheila
Aguilar, Ignacio
Molina, Federico
Pérez, Fernando
dc.date.accessioned.none.fl_str_mv 2021-09-22T13:10:36Z
dc.date.available.none.fl_str_mv 2021-09-22T13:10:36Z
dc.date.issued.none.fl_str_mv 2020-02-09
dc.description.abstract.none.fl_txt_mv As a major rice exporter, Uruguay must maximize its competitivity with higher yield, quality and innocuity, and lower inputs, in an increasingly instable environment. To timely meet these needs, INIA’s public rice breeding program (IRBP) is optimizing its cultivar development pipeline by incorporating molecular and quantitative genetics approaches that will enable to increase the selection accuracy and intensity, and to shorten the breeding cycle. Different strategies are applied depending on the complexity of the target trait in the breeding germplasm: 1) molecular assisted selection (MAS) for screening and introgression of valuable alleles for oligogenic traits, for increasing selection intensity and reducing population size for field trials; 2) genome-wide association studies (GWAS) for traits with unknow genetic architecture in our germplasm; and 3) mixed models integrating pedigree, genomic, and weather data for prediction complex traits under favorable and unfavorable environments for increasing selection accuracy. For MAS, SNP markers have been validated and applied for blast resistance, herbicide tolerance, amylose content and fragrance. GWAS were performed in indica and tropical japonica advanced breeding germplasm for arsenic grain content, tolerance to low temperature at vegetative and reproductive stages, and quantitative blast resistance. Several new and known QTL were discovered in the IRBP germplasm, and the usefulness of MAS for these traits was assessed. Finally, prediction of breeding value for yield is being implemented combining historic phenotypic and pedigree records with environmental data. First analyses of multi-year and multi-location analyses are showing promising results for increasing selection accuracy and characterizing genotype by environment interactions. Combined, these molecular and quantitative approaches are contributing to optimize the IRBP, and will accelerate the delivery of best cultivars for Uruguayan rice farmers.
dc.description.sponsorship.none.fl_txt_mv Instituto Nacional de Investigación Agropecuaria
Agencia Nacional de Investigación e Innovación
dc.identifier.anii.es.fl_str_mv FSDA_1_2018_1_154120
dc.identifier.isbn.none.fl_str_mv 978-65-00-00331-4
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/451
dc.identifier.url.none.fl_str_mv http://www.ainfo.inia.uy/digital/bitstream/item/14248/1/IRTC-2020-Rosas-1-Abstract.pdf
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento 4.0 Internacional. (CC BY)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.none.fl_str_mv Ciencias Naturales y Exactas
Ciencias Biológicas
Genética y Herencia
Ciencias Agrícolas
Biotecnología Agropecuaria
Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc.
Agricultura, Silvicultura y Pesca
Agronomía, reproducción y protección de plantas
dc.subject.es.fl_str_mv breeding
MAS
GWAS
Genomic selection
dc.title.none.fl_str_mv Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches
dc.type.es.fl_str_mv Otro
dc.type.none.fl_str_mv info:eu-repo/semantics/other
description As a major rice exporter, Uruguay must maximize its competitivity with higher yield, quality and innocuity, and lower inputs, in an increasingly instable environment. To timely meet these needs, INIA’s public rice breeding program (IRBP) is optimizing its cultivar development pipeline by incorporating molecular and quantitative genetics approaches that will enable to increase the selection accuracy and intensity, and to shorten the breeding cycle. Different strategies are applied depending on the complexity of the target trait in the breeding germplasm: 1) molecular assisted selection (MAS) for screening and introgression of valuable alleles for oligogenic traits, for increasing selection intensity and reducing population size for field trials; 2) genome-wide association studies (GWAS) for traits with unknow genetic architecture in our germplasm; and 3) mixed models integrating pedigree, genomic, and weather data for prediction complex traits under favorable and unfavorable environments for increasing selection accuracy. For MAS, SNP markers have been validated and applied for blast resistance, herbicide tolerance, amylose content and fragrance. GWAS were performed in indica and tropical japonica advanced breeding germplasm for arsenic grain content, tolerance to low temperature at vegetative and reproductive stages, and quantitative blast resistance. Several new and known QTL were discovered in the IRBP germplasm, and the usefulness of MAS for these traits was assessed. Finally, prediction of breeding value for yield is being implemented combining historic phenotypic and pedigree records with environmental data. First analyses of multi-year and multi-location analyses are showing promising results for increasing selection accuracy and characterizing genotype by environment interactions. Combined, these molecular and quantitative approaches are contributing to optimize the IRBP, and will accelerate the delivery of best cultivars for Uruguayan rice farmers.
eu_rights_str_mv openAccess
format other
id REDI_3359a1d95acdee2d6c746a2a7f5b880a
identifier_str_mv 978-65-00-00331-4
FSDA_1_2018_1_154120
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/451
publishDate 2020
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento 4.0 Internacional. (CC BY)
Acceso abierto
spelling Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2021-09-22T13:10:36Z2021-09-22T13:10:36Z2020-02-09978-65-00-00331-4https://hdl.handle.net/20.500.12381/451FSDA_1_2018_1_154120http://www.ainfo.inia.uy/digital/bitstream/item/14248/1/IRTC-2020-Rosas-1-Abstract.pdfAs a major rice exporter, Uruguay must maximize its competitivity with higher yield, quality and innocuity, and lower inputs, in an increasingly instable environment. To timely meet these needs, INIA’s public rice breeding program (IRBP) is optimizing its cultivar development pipeline by incorporating molecular and quantitative genetics approaches that will enable to increase the selection accuracy and intensity, and to shorten the breeding cycle. Different strategies are applied depending on the complexity of the target trait in the breeding germplasm: 1) molecular assisted selection (MAS) for screening and introgression of valuable alleles for oligogenic traits, for increasing selection intensity and reducing population size for field trials; 2) genome-wide association studies (GWAS) for traits with unknow genetic architecture in our germplasm; and 3) mixed models integrating pedigree, genomic, and weather data for prediction complex traits under favorable and unfavorable environments for increasing selection accuracy. For MAS, SNP markers have been validated and applied for blast resistance, herbicide tolerance, amylose content and fragrance. GWAS were performed in indica and tropical japonica advanced breeding germplasm for arsenic grain content, tolerance to low temperature at vegetative and reproductive stages, and quantitative blast resistance. Several new and known QTL were discovered in the IRBP germplasm, and the usefulness of MAS for these traits was assessed. Finally, prediction of breeding value for yield is being implemented combining historic phenotypic and pedigree records with environmental data. First analyses of multi-year and multi-location analyses are showing promising results for increasing selection accuracy and characterizing genotype by environment interactions. Combined, these molecular and quantitative approaches are contributing to optimize the IRBP, and will accelerate the delivery of best cultivars for Uruguayan rice farmers.Instituto Nacional de Investigación AgropecuariaAgencia Nacional de Investigación e InnovaciónbreedingMASGWASGenomic selectionCiencias Naturales y ExactasCiencias BiológicasGenética y HerenciaCiencias AgrícolasBiotecnología AgropecuariaTecnología GM, clonación de ganado, selección asistida, diagnósticos, etc.Agricultura, Silvicultura y PescaAgronomía, reproducción y protección de plantasBoosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics ApproachesOtroinfo:eu-repo/semantics/otherINIA//Ciencias Naturales y Exactas/Ciencias Biológicas/Genética y Herencia//Ciencias Agrícolas/Biotecnología Agropecuaria/Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc.//Ciencias Agrícolas/Agricultura, Silvicultura y Pesca/Agronomía, reproducción y protección de plantasreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónRosas, Juan EduardoAle, LucasRebollo, InésScheffel, SheilaAguilar, IgnacioMolina, FedericoPérez, FernandoLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/451/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALIRTC-2020-Rosas-1-Abstract.pdfIRTC-2020-Rosas-1-Abstract.pdfAbstract from ITRC 2020 Proceedingsapplication/pdf139174https://redi.anii.org.uy/jspui/bitstream/20.500.12381/451/1/IRTC-2020-Rosas-1-Abstract.pdf8f75964a211df2e46d17a6e1fe008f1bMD5120.500.12381/4512021-09-22 10:10:37.986oai:redi.anii.org.uy:20.500.12381/451PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212021-09-22T13:10:37REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches
Rosas, Juan Eduardo
breeding
MAS
GWAS
Genomic selection
Ciencias Naturales y Exactas
Ciencias Biológicas
Genética y Herencia
Ciencias Agrícolas
Biotecnología Agropecuaria
Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc.
Agricultura, Silvicultura y Pesca
Agronomía, reproducción y protección de plantas
title Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches
title_full Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches
title_fullStr Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches
title_full_unstemmed Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches
title_short Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches
title_sort Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches
topic breeding
MAS
GWAS
Genomic selection
Ciencias Naturales y Exactas
Ciencias Biológicas
Genética y Herencia
Ciencias Agrícolas
Biotecnología Agropecuaria
Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc.
Agricultura, Silvicultura y Pesca
Agronomía, reproducción y protección de plantas
url https://hdl.handle.net/20.500.12381/451
http://www.ainfo.inia.uy/digital/bitstream/item/14248/1/IRTC-2020-Rosas-1-Abstract.pdf