Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches
Resumen:
As a major rice exporter, Uruguay must maximize its competitivity with higher yield, quality and innocuity, and lower inputs, in an increasingly instable environment. To timely meet these needs, INIA’s public rice breeding program (IRBP) is optimizing its cultivar development pipeline by incorporating molecular and quantitative genetics approaches that will enable to increase the selection accuracy and intensity, and to shorten the breeding cycle. Different strategies are applied depending on the complexity of the target trait in the breeding germplasm: 1) molecular assisted selection (MAS) for screening and introgression of valuable alleles for oligogenic traits, for increasing selection intensity and reducing population size for field trials; 2) genome-wide association studies (GWAS) for traits with unknow genetic architecture in our germplasm; and 3) mixed models integrating pedigree, genomic, and weather data for prediction complex traits under favorable and unfavorable environments for increasing selection accuracy. For MAS, SNP markers have been validated and applied for blast resistance, herbicide tolerance, amylose content and fragrance. GWAS were performed in indica and tropical japonica advanced breeding germplasm for arsenic grain content, tolerance to low temperature at vegetative and reproductive stages, and quantitative blast resistance. Several new and known QTL were discovered in the IRBP germplasm, and the usefulness of MAS for these traits was assessed. Finally, prediction of breeding value for yield is being implemented combining historic phenotypic and pedigree records with environmental data. First analyses of multi-year and multi-location analyses are showing promising results for increasing selection accuracy and characterizing genotype by environment interactions. Combined, these molecular and quantitative approaches are contributing to optimize the IRBP, and will accelerate the delivery of best cultivars for Uruguayan rice farmers.
2020 | |
Instituto Nacional de Investigación Agropecuaria Agencia Nacional de Investigación e Innovación |
|
breeding MAS GWAS Genomic selection Ciencias Naturales y Exactas Ciencias Biológicas Genética y Herencia Ciencias Agrícolas Biotecnología Agropecuaria Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc. Agricultura, Silvicultura y Pesca Agronomía, reproducción y protección de plantas |
|
Agencia Nacional de Investigación e Innovación | |
REDI | |
https://hdl.handle.net/20.500.12381/451
http://www.ainfo.inia.uy/digital/bitstream/item/14248/1/IRTC-2020-Rosas-1-Abstract.pdf |
|
Acceso abierto | |
Reconocimiento 4.0 Internacional. (CC BY) |
_version_ | 1814959254761635840 |
---|---|
author | Rosas, Juan Eduardo |
author2 | Ale, Lucas Rebollo, Inés Scheffel, Sheila Aguilar, Ignacio Molina, Federico Pérez, Fernando |
author2_role | author author author author author author |
author_facet | Rosas, Juan Eduardo Ale, Lucas Rebollo, Inés Scheffel, Sheila Aguilar, Ignacio Molina, Federico Pérez, Fernando |
author_role | author |
bitstream.checksum.fl_str_mv | 2d97768b1a25a7df5a347bb58fd2d77f 8f75964a211df2e46d17a6e1fe008f1b |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/451/2/license.txt https://redi.anii.org.uy/jspui/bitstream/20.500.12381/451/1/IRTC-2020-Rosas-1-Abstract.pdf |
collection | REDI |
dc.creator.none.fl_str_mv | Rosas, Juan Eduardo Ale, Lucas Rebollo, Inés Scheffel, Sheila Aguilar, Ignacio Molina, Federico Pérez, Fernando |
dc.date.accessioned.none.fl_str_mv | 2021-09-22T13:10:36Z |
dc.date.available.none.fl_str_mv | 2021-09-22T13:10:36Z |
dc.date.issued.none.fl_str_mv | 2020-02-09 |
dc.description.abstract.none.fl_txt_mv | As a major rice exporter, Uruguay must maximize its competitivity with higher yield, quality and innocuity, and lower inputs, in an increasingly instable environment. To timely meet these needs, INIA’s public rice breeding program (IRBP) is optimizing its cultivar development pipeline by incorporating molecular and quantitative genetics approaches that will enable to increase the selection accuracy and intensity, and to shorten the breeding cycle. Different strategies are applied depending on the complexity of the target trait in the breeding germplasm: 1) molecular assisted selection (MAS) for screening and introgression of valuable alleles for oligogenic traits, for increasing selection intensity and reducing population size for field trials; 2) genome-wide association studies (GWAS) for traits with unknow genetic architecture in our germplasm; and 3) mixed models integrating pedigree, genomic, and weather data for prediction complex traits under favorable and unfavorable environments for increasing selection accuracy. For MAS, SNP markers have been validated and applied for blast resistance, herbicide tolerance, amylose content and fragrance. GWAS were performed in indica and tropical japonica advanced breeding germplasm for arsenic grain content, tolerance to low temperature at vegetative and reproductive stages, and quantitative blast resistance. Several new and known QTL were discovered in the IRBP germplasm, and the usefulness of MAS for these traits was assessed. Finally, prediction of breeding value for yield is being implemented combining historic phenotypic and pedigree records with environmental data. First analyses of multi-year and multi-location analyses are showing promising results for increasing selection accuracy and characterizing genotype by environment interactions. Combined, these molecular and quantitative approaches are contributing to optimize the IRBP, and will accelerate the delivery of best cultivars for Uruguayan rice farmers. |
dc.description.sponsorship.none.fl_txt_mv | Instituto Nacional de Investigación Agropecuaria Agencia Nacional de Investigación e Innovación |
dc.identifier.anii.es.fl_str_mv | FSDA_1_2018_1_154120 |
dc.identifier.isbn.none.fl_str_mv | 978-65-00-00331-4 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12381/451 |
dc.identifier.url.none.fl_str_mv | http://www.ainfo.inia.uy/digital/bitstream/item/14248/1/IRTC-2020-Rosas-1-Abstract.pdf |
dc.rights.es.fl_str_mv | Acceso abierto |
dc.rights.license.none.fl_str_mv | Reconocimiento 4.0 Internacional. (CC BY) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:REDI instname:Agencia Nacional de Investigación e Innovación instacron:Agencia Nacional de Investigación e Innovación |
dc.subject.anii.none.fl_str_mv | Ciencias Naturales y Exactas Ciencias Biológicas Genética y Herencia Ciencias Agrícolas Biotecnología Agropecuaria Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc. Agricultura, Silvicultura y Pesca Agronomía, reproducción y protección de plantas |
dc.subject.es.fl_str_mv | breeding MAS GWAS Genomic selection |
dc.title.none.fl_str_mv | Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches |
dc.type.es.fl_str_mv | Otro |
dc.type.none.fl_str_mv | info:eu-repo/semantics/other |
description | As a major rice exporter, Uruguay must maximize its competitivity with higher yield, quality and innocuity, and lower inputs, in an increasingly instable environment. To timely meet these needs, INIA’s public rice breeding program (IRBP) is optimizing its cultivar development pipeline by incorporating molecular and quantitative genetics approaches that will enable to increase the selection accuracy and intensity, and to shorten the breeding cycle. Different strategies are applied depending on the complexity of the target trait in the breeding germplasm: 1) molecular assisted selection (MAS) for screening and introgression of valuable alleles for oligogenic traits, for increasing selection intensity and reducing population size for field trials; 2) genome-wide association studies (GWAS) for traits with unknow genetic architecture in our germplasm; and 3) mixed models integrating pedigree, genomic, and weather data for prediction complex traits under favorable and unfavorable environments for increasing selection accuracy. For MAS, SNP markers have been validated and applied for blast resistance, herbicide tolerance, amylose content and fragrance. GWAS were performed in indica and tropical japonica advanced breeding germplasm for arsenic grain content, tolerance to low temperature at vegetative and reproductive stages, and quantitative blast resistance. Several new and known QTL were discovered in the IRBP germplasm, and the usefulness of MAS for these traits was assessed. Finally, prediction of breeding value for yield is being implemented combining historic phenotypic and pedigree records with environmental data. First analyses of multi-year and multi-location analyses are showing promising results for increasing selection accuracy and characterizing genotype by environment interactions. Combined, these molecular and quantitative approaches are contributing to optimize the IRBP, and will accelerate the delivery of best cultivars for Uruguayan rice farmers. |
eu_rights_str_mv | openAccess |
format | other |
id | REDI_3359a1d95acdee2d6c746a2a7f5b880a |
identifier_str_mv | 978-65-00-00331-4 FSDA_1_2018_1_154120 |
instacron_str | Agencia Nacional de Investigación e Innovación |
institution | Agencia Nacional de Investigación e Innovación |
instname_str | Agencia Nacional de Investigación e Innovación |
network_acronym_str | REDI |
network_name_str | REDI |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/451 |
publishDate | 2020 |
reponame_str | REDI |
repository.mail.fl_str_mv | jmaldini@anii.org.uy |
repository.name.fl_str_mv | REDI - Agencia Nacional de Investigación e Innovación |
repository_id_str | 9421 |
rights_invalid_str_mv | Reconocimiento 4.0 Internacional. (CC BY) Acceso abierto |
spelling | Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2021-09-22T13:10:36Z2021-09-22T13:10:36Z2020-02-09978-65-00-00331-4https://hdl.handle.net/20.500.12381/451FSDA_1_2018_1_154120http://www.ainfo.inia.uy/digital/bitstream/item/14248/1/IRTC-2020-Rosas-1-Abstract.pdfAs a major rice exporter, Uruguay must maximize its competitivity with higher yield, quality and innocuity, and lower inputs, in an increasingly instable environment. To timely meet these needs, INIA’s public rice breeding program (IRBP) is optimizing its cultivar development pipeline by incorporating molecular and quantitative genetics approaches that will enable to increase the selection accuracy and intensity, and to shorten the breeding cycle. Different strategies are applied depending on the complexity of the target trait in the breeding germplasm: 1) molecular assisted selection (MAS) for screening and introgression of valuable alleles for oligogenic traits, for increasing selection intensity and reducing population size for field trials; 2) genome-wide association studies (GWAS) for traits with unknow genetic architecture in our germplasm; and 3) mixed models integrating pedigree, genomic, and weather data for prediction complex traits under favorable and unfavorable environments for increasing selection accuracy. For MAS, SNP markers have been validated and applied for blast resistance, herbicide tolerance, amylose content and fragrance. GWAS were performed in indica and tropical japonica advanced breeding germplasm for arsenic grain content, tolerance to low temperature at vegetative and reproductive stages, and quantitative blast resistance. Several new and known QTL were discovered in the IRBP germplasm, and the usefulness of MAS for these traits was assessed. Finally, prediction of breeding value for yield is being implemented combining historic phenotypic and pedigree records with environmental data. First analyses of multi-year and multi-location analyses are showing promising results for increasing selection accuracy and characterizing genotype by environment interactions. Combined, these molecular and quantitative approaches are contributing to optimize the IRBP, and will accelerate the delivery of best cultivars for Uruguayan rice farmers.Instituto Nacional de Investigación AgropecuariaAgencia Nacional de Investigación e InnovaciónbreedingMASGWASGenomic selectionCiencias Naturales y ExactasCiencias BiológicasGenética y HerenciaCiencias AgrícolasBiotecnología AgropecuariaTecnología GM, clonación de ganado, selección asistida, diagnósticos, etc.Agricultura, Silvicultura y PescaAgronomía, reproducción y protección de plantasBoosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics ApproachesOtroinfo:eu-repo/semantics/otherINIA//Ciencias Naturales y Exactas/Ciencias Biológicas/Genética y Herencia//Ciencias Agrícolas/Biotecnología Agropecuaria/Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc.//Ciencias Agrícolas/Agricultura, Silvicultura y Pesca/Agronomía, reproducción y protección de plantasreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónRosas, Juan EduardoAle, LucasRebollo, InésScheffel, SheilaAguilar, IgnacioMolina, FedericoPérez, FernandoLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/451/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALIRTC-2020-Rosas-1-Abstract.pdfIRTC-2020-Rosas-1-Abstract.pdfAbstract from ITRC 2020 Proceedingsapplication/pdf139174https://redi.anii.org.uy/jspui/bitstream/20.500.12381/451/1/IRTC-2020-Rosas-1-Abstract.pdf8f75964a211df2e46d17a6e1fe008f1bMD5120.500.12381/4512021-09-22 10:10:37.986oai:redi.anii.org.uy:20.500.12381/451PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212021-09-22T13:10:37REDI - Agencia Nacional de Investigación e Innovaciónfalse |
spellingShingle | Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches Rosas, Juan Eduardo breeding MAS GWAS Genomic selection Ciencias Naturales y Exactas Ciencias Biológicas Genética y Herencia Ciencias Agrícolas Biotecnología Agropecuaria Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc. Agricultura, Silvicultura y Pesca Agronomía, reproducción y protección de plantas |
title | Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches |
title_full | Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches |
title_fullStr | Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches |
title_full_unstemmed | Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches |
title_short | Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches |
title_sort | Boosting INIA’s Rice Breeding Program with Molecular and Quantitative Genetics Approaches |
topic | breeding MAS GWAS Genomic selection Ciencias Naturales y Exactas Ciencias Biológicas Genética y Herencia Ciencias Agrícolas Biotecnología Agropecuaria Tecnología GM, clonación de ganado, selección asistida, diagnósticos, etc. Agricultura, Silvicultura y Pesca Agronomía, reproducción y protección de plantas |
url | https://hdl.handle.net/20.500.12381/451 http://www.ainfo.inia.uy/digital/bitstream/item/14248/1/IRTC-2020-Rosas-1-Abstract.pdf |