Machine learning in healthcare toward early risk prediction: A case study of liver transplantation
Resumen:
Healthcare paradigms have always focused into the domain of early prediction of diseases. Especially in field of chronic diseases, the spotlight is always on the aspect of early detection and prevention by controlling the key risk factors in a comprehensive and integrated manner. In this endeavor the colossal power of health data comes into consideration; clubbed with the advanced techniques of computational intelligence to harvest the health data in the best possible way, the aim lies at the prediction of risks or deciphering interesting patterns and early signs of the diseases hidden in the health data. The output obtained from the intelligent analysis of the health data provides seminal insights to the design of more efficient treatment strategies. This work highlights some aspects of artificial intelligence in healthcare, illustrating through a case study of liver transplantation program, where the patient cohort could be interestingly separated into contrasting groups in a pretransplant scenario using machine learning, evincing a relationship with their respective posttransplant risks. In addition to relating the risk groups before liver transplantation with cardiometabolic risks through vascular age, this study accentuates the foundation of Clinical Decision Support System in transplantations, an assistive tool for the medical personnel to computationally analyze and visualize the comprehensive health situation of patients from the perspective of risks.
2020 | |
Agencia Nacional de Investigación e Innovación (ANII), Uruguay Universidad Tecnológica Nacional, Buenos Aires, Argentina Universidad de la República, Uruguay |
|
Artificial intelligence Machine learning eHealth Data analytics Predictive analytics Transplantation Liver Cardiometabolic Vascular age Ciencias Médicas y de la Salud Ciencias Naturales y Exactas Ciencias de la Computación e Información Ingeniería y Tecnología |
|
Inglés | |
Agencia Nacional de Investigación e Innovación | |
REDI | |
https://hdl.handle.net/20.500.12381/287
https://www.sciencedirect.com/science/article/pii/B9780128193143000045 |
|
Acceso abierto | |
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) |
_version_ | 1814959261467279360 |
---|---|
author | Chatterjee, Parag |
author2 | Noceti, Ofelia Menéndez, Josemaría Gerona, Solange Toribio, Melina Cymberknop, Leandro Armentano, Ricardo |
author2_role | author author author author author author |
author_facet | Chatterjee, Parag Noceti, Ofelia Menéndez, Josemaría Gerona, Solange Toribio, Melina Cymberknop, Leandro Armentano, Ricardo |
author_role | author |
bitstream.checksum.fl_str_mv | 2d97768b1a25a7df5a347bb58fd2d77f 680630b6c713cb2ace5d1e70af4d00ed |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/287/2/license.txt https://redi.anii.org.uy/jspui/bitstream/20.500.12381/287/1/Book%20Chapter.pdf |
collection | REDI |
dc.creator.none.fl_str_mv | Chatterjee, Parag Noceti, Ofelia Menéndez, Josemaría Gerona, Solange Toribio, Melina Cymberknop, Leandro Armentano, Ricardo |
dc.date.accessioned.none.fl_str_mv | 2021-05-18T11:56:16Z |
dc.date.available.none.fl_str_mv | 2021-05-18T11:56:16Z |
dc.date.issued.none.fl_str_mv | 2020 |
dc.description.abstract.none.fl_txt_mv | Healthcare paradigms have always focused into the domain of early prediction of diseases. Especially in field of chronic diseases, the spotlight is always on the aspect of early detection and prevention by controlling the key risk factors in a comprehensive and integrated manner. In this endeavor the colossal power of health data comes into consideration; clubbed with the advanced techniques of computational intelligence to harvest the health data in the best possible way, the aim lies at the prediction of risks or deciphering interesting patterns and early signs of the diseases hidden in the health data. The output obtained from the intelligent analysis of the health data provides seminal insights to the design of more efficient treatment strategies. This work highlights some aspects of artificial intelligence in healthcare, illustrating through a case study of liver transplantation program, where the patient cohort could be interestingly separated into contrasting groups in a pretransplant scenario using machine learning, evincing a relationship with their respective posttransplant risks. In addition to relating the risk groups before liver transplantation with cardiometabolic risks through vascular age, this study accentuates the foundation of Clinical Decision Support System in transplantations, an assistive tool for the medical personnel to computationally analyze and visualize the comprehensive health situation of patients from the perspective of risks. |
dc.description.sponsorship.none.fl_txt_mv | Agencia Nacional de Investigación e Innovación (ANII), Uruguay Universidad Tecnológica Nacional, Buenos Aires, Argentina Universidad de la República, Uruguay |
dc.identifier.anii.es.fl_str_mv | FSDA_1_2017_1_143653 |
dc.identifier.doi.none.fl_str_mv | 10.1016/B978-0-12-819314-3.00004-5 |
dc.identifier.isbn.none.fl_str_mv | 978-0-12-819314-3 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12381/287 |
dc.identifier.url.none.fl_str_mv | https://www.sciencedirect.com/science/article/pii/B9780128193143000045 |
dc.language.iso.none.fl_str_mv | eng |
dc.publisher.es.fl_str_mv | Academic Press |
dc.rights.es.fl_str_mv | Acceso abierto |
dc.rights.license.none.fl_str_mv | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.es.fl_str_mv | Data Analytics in Biomedical Engineering and Healthcare |
dc.source.none.fl_str_mv | reponame:REDI instname:Agencia Nacional de Investigación e Innovación instacron:Agencia Nacional de Investigación e Innovación |
dc.subject.anii.es.fl_str_mv | Ciencias Médicas y de la Salud Ciencias Naturales y Exactas Ciencias de la Computación e Información Ingeniería y Tecnología |
dc.subject.es.fl_str_mv | Artificial intelligence Machine learning eHealth Data analytics Predictive analytics Transplantation Liver Cardiometabolic Vascular age |
dc.title.none.fl_str_mv | Machine learning in healthcare toward early risk prediction: A case study of liver transplantation |
dc.type.es.fl_str_mv | Parte de libro |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bookPart |
dc.type.version.es.fl_str_mv | Publicado |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Healthcare paradigms have always focused into the domain of early prediction of diseases. Especially in field of chronic diseases, the spotlight is always on the aspect of early detection and prevention by controlling the key risk factors in a comprehensive and integrated manner. In this endeavor the colossal power of health data comes into consideration; clubbed with the advanced techniques of computational intelligence to harvest the health data in the best possible way, the aim lies at the prediction of risks or deciphering interesting patterns and early signs of the diseases hidden in the health data. The output obtained from the intelligent analysis of the health data provides seminal insights to the design of more efficient treatment strategies. This work highlights some aspects of artificial intelligence in healthcare, illustrating through a case study of liver transplantation program, where the patient cohort could be interestingly separated into contrasting groups in a pretransplant scenario using machine learning, evincing a relationship with their respective posttransplant risks. In addition to relating the risk groups before liver transplantation with cardiometabolic risks through vascular age, this study accentuates the foundation of Clinical Decision Support System in transplantations, an assistive tool for the medical personnel to computationally analyze and visualize the comprehensive health situation of patients from the perspective of risks. |
eu_rights_str_mv | openAccess |
format | bookPart |
id | REDI_2c46e5edd91421dca80ae32207121561 |
identifier_str_mv | 978-0-12-819314-3 FSDA_1_2017_1_143653 10.1016/B978-0-12-819314-3.00004-5 |
instacron_str | Agencia Nacional de Investigación e Innovación |
institution | Agencia Nacional de Investigación e Innovación |
instname_str | Agencia Nacional de Investigación e Innovación |
language | eng |
network_acronym_str | REDI |
network_name_str | REDI |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/287 |
publishDate | 2020 |
reponame_str | REDI |
repository.mail.fl_str_mv | jmaldini@anii.org.uy |
repository.name.fl_str_mv | REDI - Agencia Nacional de Investigación e Innovación |
repository_id_str | 9421 |
rights_invalid_str_mv | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) Acceso abierto |
spelling | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)Acceso abiertoinfo:eu-repo/semantics/openAccess2021-05-18T11:56:16Z2021-05-18T11:56:16Z2020978-0-12-819314-3https://hdl.handle.net/20.500.12381/287FSDA_1_2017_1_14365310.1016/B978-0-12-819314-3.00004-5https://www.sciencedirect.com/science/article/pii/B9780128193143000045Healthcare paradigms have always focused into the domain of early prediction of diseases. Especially in field of chronic diseases, the spotlight is always on the aspect of early detection and prevention by controlling the key risk factors in a comprehensive and integrated manner. In this endeavor the colossal power of health data comes into consideration; clubbed with the advanced techniques of computational intelligence to harvest the health data in the best possible way, the aim lies at the prediction of risks or deciphering interesting patterns and early signs of the diseases hidden in the health data. The output obtained from the intelligent analysis of the health data provides seminal insights to the design of more efficient treatment strategies. This work highlights some aspects of artificial intelligence in healthcare, illustrating through a case study of liver transplantation program, where the patient cohort could be interestingly separated into contrasting groups in a pretransplant scenario using machine learning, evincing a relationship with their respective posttransplant risks. In addition to relating the risk groups before liver transplantation with cardiometabolic risks through vascular age, this study accentuates the foundation of Clinical Decision Support System in transplantations, an assistive tool for the medical personnel to computationally analyze and visualize the comprehensive health situation of patients from the perspective of risks.Agencia Nacional de Investigación e Innovación (ANII), UruguayUniversidad Tecnológica Nacional, Buenos Aires, ArgentinaUniversidad de la República, UruguayengAcademic PressData Analytics in Biomedical Engineering and Healthcarereponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónArtificial intelligenceMachine learningeHealthData analyticsPredictive analyticsTransplantationLiverCardiometabolicVascular ageCiencias Médicas y de la SaludCiencias Naturales y ExactasCiencias de la Computación e InformaciónIngeniería y TecnologíaMachine learning in healthcare toward early risk prediction: A case study of liver transplantationParte de libroPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPartUniversidad de la República, Uruguay/ / Ciencias Médicas y de la Salud/ / Ciencias Naturales y Exactas / Ciencias de la Computación e Información/ / Ingeniería y TecnologíaChatterjee, ParagNoceti, OfeliaMenéndez, JosemaríaGerona, SolangeToribio, MelinaCymberknop, LeandroArmentano, RicardoLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/287/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALBook Chapter.pdfBook Chapter.pdfChapter 4. Data Analytics in Biomedical Engineering and Healthcare. Elsevierapplication/pdf3610698https://redi.anii.org.uy/jspui/bitstream/20.500.12381/287/1/Book%20Chapter.pdf680630b6c713cb2ace5d1e70af4d00edMD5120.500.12381/2872021-08-01 12:50:55.844oai:redi.anii.org.uy:20.500.12381/287PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212021-08-01T15:50:55REDI - Agencia Nacional de Investigación e Innovaciónfalse |
spellingShingle | Machine learning in healthcare toward early risk prediction: A case study of liver transplantation Chatterjee, Parag Artificial intelligence Machine learning eHealth Data analytics Predictive analytics Transplantation Liver Cardiometabolic Vascular age Ciencias Médicas y de la Salud Ciencias Naturales y Exactas Ciencias de la Computación e Información Ingeniería y Tecnología |
status_str | publishedVersion |
title | Machine learning in healthcare toward early risk prediction: A case study of liver transplantation |
title_full | Machine learning in healthcare toward early risk prediction: A case study of liver transplantation |
title_fullStr | Machine learning in healthcare toward early risk prediction: A case study of liver transplantation |
title_full_unstemmed | Machine learning in healthcare toward early risk prediction: A case study of liver transplantation |
title_short | Machine learning in healthcare toward early risk prediction: A case study of liver transplantation |
title_sort | Machine learning in healthcare toward early risk prediction: A case study of liver transplantation |
topic | Artificial intelligence Machine learning eHealth Data analytics Predictive analytics Transplantation Liver Cardiometabolic Vascular age Ciencias Médicas y de la Salud Ciencias Naturales y Exactas Ciencias de la Computación e Información Ingeniería y Tecnología |
url | https://hdl.handle.net/20.500.12381/287 https://www.sciencedirect.com/science/article/pii/B9780128193143000045 |