The Gross-Saccoman Conjecture is True

Romero, Pablo

Resumen:

Consider a graph with perfect nodes but independent edge failures with identical probability ρ. The reliability is the connectedness probability of the random graph. A graph with n nodes and e edges is uniformly optimally reliable (UOR) if it has the greatest reliability among all graphs with the same number of nodes and edges, for all values of ρ. In 1997, Gross and Saccoman proved that the simple UOR graphs for e = n, e = n + 1 and e = n + 2 are also optimal when the classes are extended to include multigraphs [6]. The authors conjectured that the UOR simple graphs for e = n + 3 are optimal in multigraphs as well. A proof of the Gross-Saccoman conjecture is introduced.


Detalles Bibliográficos
2020
Agencia Nacional de Investigación e Innovación
Graph Theory
Uniformly optimally reliable graph
Gross-Saccoman conjecture
Network Reliability
Optimization
Multigraphs
Ciencias Naturales y Exactas
Matemáticas
Matemática Aplicada
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/700
Acceso abierto
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)

Resultados similares