The Gross-Saccoman Conjecture is True
Resumen:
Consider a graph with perfect nodes but independent edge failures with identical probability ρ. The reliability is the connectedness probability of the random graph. A graph with n nodes and e edges is uniformly optimally reliable (UOR) if it has the greatest reliability among all graphs with the same number of nodes and edges, for all values of ρ. In 1997, Gross and Saccoman proved that the simple UOR graphs for e = n, e = n + 1 and e = n + 2 are also optimal when the classes are extended to include multigraphs [6]. The authors conjectured that the UOR simple graphs for e = n + 3 are optimal in multigraphs as well. A proof of the Gross-Saccoman conjecture is introduced.
2020 | |
Agencia Nacional de Investigación e Innovación | |
Graph Theory Uniformly optimally reliable graph Gross-Saccoman conjecture Network Reliability Optimization Multigraphs Ciencias Naturales y Exactas Matemáticas Matemática Aplicada |
|
Inglés | |
Agencia Nacional de Investigación e Innovación | |
REDI | |
https://hdl.handle.net/20.500.12381/700 | |
Acceso abierto | |
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) |
_version_ | 1814959262126833664 |
---|---|
author | Romero, Pablo |
author_facet | Romero, Pablo |
author_role | author |
bitstream.checksum.fl_str_mv | 3c9d86d36485746409b4281a0893d729 7cea3fadf92b057bb6ee34e3b5da8973 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/700/2/license.txt https://redi.anii.org.uy/jspui/bitstream/20.500.12381/700/1/8%20%281%29.pdf |
collection | REDI |
dc.creator.none.fl_str_mv | Romero, Pablo |
dc.date.accessioned.none.fl_str_mv | 2022-10-20T23:29:04Z |
dc.date.issued.none.fl_str_mv | 2020-11-24 |
dc.description.abstract.none.fl_txt_mv | Consider a graph with perfect nodes but independent edge failures with identical probability ρ. The reliability is the connectedness probability of the random graph. A graph with n nodes and e edges is uniformly optimally reliable (UOR) if it has the greatest reliability among all graphs with the same number of nodes and edges, for all values of ρ. In 1997, Gross and Saccoman proved that the simple UOR graphs for e = n, e = n + 1 and e = n + 2 are also optimal when the classes are extended to include multigraphs [6]. The authors conjectured that the UOR simple graphs for e = n + 3 are optimal in multigraphs as well. A proof of the Gross-Saccoman conjecture is introduced. |
dc.description.sponsorship.none.fl_txt_mv | Agencia Nacional de Investigación e Innovación |
dc.identifier.anii.es.fl_str_mv | FCE_1_2019_1_156693 |
dc.identifier.doi.none.fl_str_mv | 10.1002/net.22006 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12381/700 |
dc.language.iso.none.fl_str_mv | eng |
dc.publisher.es.fl_str_mv | Wiley |
dc.rights.embargoterm.es.fl_str_mv | 2023-09-30 2022-11-24 |
dc.rights.es.fl_str_mv | Acceso abierto |
dc.rights.license.none.fl_str_mv | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.es.fl_str_mv | Networks |
dc.source.none.fl_str_mv | reponame:REDI instname:Agencia Nacional de Investigación e Innovación instacron:Agencia Nacional de Investigación e Innovación |
dc.subject.anii.none.fl_str_mv | Ciencias Naturales y Exactas Matemáticas Matemática Aplicada |
dc.subject.es.fl_str_mv | Graph Theory Uniformly optimally reliable graph Gross-Saccoman conjecture Network Reliability Optimization Multigraphs |
dc.title.none.fl_str_mv | The Gross-Saccoman Conjecture is True |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.es.fl_str_mv | Enviado |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/submittedVersion |
description | Consider a graph with perfect nodes but independent edge failures with identical probability ρ. The reliability is the connectedness probability of the random graph. A graph with n nodes and e edges is uniformly optimally reliable (UOR) if it has the greatest reliability among all graphs with the same number of nodes and edges, for all values of ρ. In 1997, Gross and Saccoman proved that the simple UOR graphs for e = n, e = n + 1 and e = n + 2 are also optimal when the classes are extended to include multigraphs [6]. The authors conjectured that the UOR simple graphs for e = n + 3 are optimal in multigraphs as well. A proof of the Gross-Saccoman conjecture is introduced. |
eu_rights_str_mv | openAccess |
format | article |
id | REDI_149ec9d9d78c9c3a19ee98fa55d0c8be |
identifier_str_mv | FCE_1_2019_1_156693 10.1002/net.22006 |
instacron_str | Agencia Nacional de Investigación e Innovación |
institution | Agencia Nacional de Investigación e Innovación |
instname_str | Agencia Nacional de Investigación e Innovación |
language | eng |
network_acronym_str | REDI |
network_name_str | REDI |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/700 |
publishDate | 2020 |
reponame_str | REDI |
repository.mail.fl_str_mv | jmaldini@anii.org.uy |
repository.name.fl_str_mv | REDI - Agencia Nacional de Investigación e Innovación |
repository_id_str | 9421 |
rights_invalid_str_mv | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) Acceso abierto 2023-09-30 2022-11-24 |
spelling | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)Acceso abierto2023-09-302022-11-24info:eu-repo/semantics/openAccess2022-10-20T23:29:04Z2020-11-24https://hdl.handle.net/20.500.12381/700FCE_1_2019_1_15669310.1002/net.22006Consider a graph with perfect nodes but independent edge failures with identical probability ρ. The reliability is the connectedness probability of the random graph. A graph with n nodes and e edges is uniformly optimally reliable (UOR) if it has the greatest reliability among all graphs with the same number of nodes and edges, for all values of ρ. In 1997, Gross and Saccoman proved that the simple UOR graphs for e = n, e = n + 1 and e = n + 2 are also optimal when the classes are extended to include multigraphs [6]. The authors conjectured that the UOR simple graphs for e = n + 3 are optimal in multigraphs as well. A proof of the Gross-Saccoman conjecture is introduced.Agencia Nacional de Investigación e InnovaciónengWileyNetworksreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónGraph TheoryUniformly optimally reliable graphGross-Saccoman conjectureNetwork ReliabilityOptimizationMultigraphsCiencias Naturales y ExactasMatemáticasMatemática AplicadaThe Gross-Saccoman Conjecture is TrueArtículoEnviadoinfo:eu-repo/semantics/submittedVersioninfo:eu-repo/semantics/articleUniversidad de la RepúblicaUniversidad de Buenos Aires//Ciencias Naturales y Exactas/Matemáticas/Matemática AplicadaRomero, PabloLICENSElicense.txtlicense.txttext/plain; charset=utf-84944https://redi.anii.org.uy/jspui/bitstream/20.500.12381/700/2/license.txt3c9d86d36485746409b4281a0893d729MD52ORIGINAL8 (1).pdf8 (1).pdfGross-Saccoman Conjectureapplication/pdf195546https://redi.anii.org.uy/jspui/bitstream/20.500.12381/700/1/8%20%281%29.pdf7cea3fadf92b057bb6ee34e3b5da8973MD5120.500.12381/7002023-06-13 13:48:30.533oai:redi.anii.org.uy:20.500.12381/700PHA+PGI+QUNVRVJETyBERSBDRVNJT04gTk8gRVhDTFVTSVZBIERFIERFUkVDSE9TPC9iPjwvcD4KCjxwPkFjZXB0YW5kbyBsYSBjZXNpw7NuIGRlIGRlcmVjaG9zIGVsIHVzdWFyaW8gREVDTEFSQSBxdWUgb3N0ZW50YSBsYSBjb25kaWNpw7NuIGRlIGF1dG9yIGVuIGVsIHNlbnRpZG8gcXVlIG90b3JnYSBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSBzb2JyZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+Cgo8cD5Db24gZWwgZmluIGRlIGRhciBsYSBtw6F4aW1hIGRpZnVzacOzbiBhIGxhIG9icmEgYSB0cmF2w6lzIGRlbCByZXBvc2l0b3JpbyBkZSBhY2Nlc28gYWJpZXJ0byBSRURJIChodHRwczovL3JlZGkuYW5paS5vcmcudXkpLCBlbCBBVVRPUiBDRURFIGEgPGI+QWdlbmNpYSBOYWNpb25hbCBkZSBJbnZlc3RpZ2FjacOzbiBlIElubm92YWNpw7NuPC9iPiAoPGI+QU5JSTwvYj4pLCBkZSBmb3JtYSBncmF0dWl0YSB5IE5PIEVYQ0xVU0lWQSwgY29uIGNhcsOhY3RlciBpcnJldm9jYWJsZSBlIGlsaW1pdGFkbyBlbiBlbCB0aWVtcG8geSBjb24gw6FtYml0byBtdW5kaWFsLCBsb3MgZGVyZWNob3MgZGUgcmVwcm9kdWNjacOzbiwgZGUgZGlzdHJpYnVjacOzbiwgZGUgY29tdW5pY2FjacOzbiBww7pibGljYSwgaW5jbHVpZG8gZWwgZGVyZWNobyBkZSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZWxlY3Ryw7NuaWNhLCBwYXJhIHF1ZSBwdWVkYSBzZXIgdXRpbGl6YWRhIGRlIGZvcm1hIGxpYnJlIHkgZ3JhdHVpdGEgcG9yIHRvZG9zIGxvcyBxdWUgbG8gZGVzZWVuLjwvcD4KCjxwPkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOjwvcD4KCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgPGI+QU5JSTwvYj46PC9wPgoKPHVsPgo8bGkgdmFsdWU9KGEpPlRyYW5zZm9ybWFyIGxhIG9icmEgZW4gbGEgbWVkaWRhIGVuIHF1ZSBzZWEgbmVjZXNhcmlvIHBhcmEgYWRhcHRhcmxhIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hIHN1c2NlcHRpYmxlIGRlIGluY29ycG9yYWNpw7NuIGEgSW50ZXJuZXQ7IHJlYWxpemFyIGxhcyBhZGFwdGFjaW9uZXMgbmVjZXNhcmlhcyBwYXJhIGhhY2VyIHBvc2libGUgc3UgYWNjZXNvIHkgdmlzdWFsaXphY2nDs24gcGVybWFuZW50ZSwgYcO6biBwb3IgcGFydGUgZGUgcGVyc29uYXMgY29uIGRpc2NhcGFjaWRhZCwgcmVhbGl6YXIgbGFzIG1pZ3JhY2lvbmVzIGRlIGZvcm1hdG9zIHBhcmEgYXNlZ3VyYXIgbGEgcHJlc2VydmFjacOzbiBhIGxhcmdvIHBsYXpvLCBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24gbyBkZSBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIEVuIG5pbmfDum4gY2FzbyBkaWNoYXMgbW9kaWZpY2FjaW9uZXMgaW1wbGljYXLDoW4gYWR1bHRlcmFjaW9uZXMgZW4gZWwgY29udGVuaWRvIGRlIGxhIG9icmEuPC9saT4gCjxsaSB2YWx1ZT0oYik+UmVwcm9kdWNpciBsYSBvYnJhIGVuIHVuIG1lZGlvIGRpZ2l0YWwgcGFyYSBzdSBpbmNvcnBvcmFjacOzbiBhIHNpc3RlbWFzIGRlIGLDunNxdWVkYSB5IHJlY3VwZXJhY2nDs24sIGluY2x1eWVuZG8gZWwgZGVyZWNobyBhIHJlcHJvZHVjaXIgeSBhbG1hY2VuYXJsYSBlbiBzZXJ2aWRvcmVzIHUgb3Ryb3MgbWVkaW9zIGRpZ2l0YWxlcyBhIGxvcyBlZmVjdG9zIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uPC9saT4gCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gCjxsaSB2YWx1ZT0oZCk+UmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0Lgo8L3VsPgoKPHA+RW4gdmlydHVkIGRlbCBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZvIGRlIGxhIGNlc2nDs24sIGVsIEF1dG9yIGNvbnNlcnZhIHRvZG9zIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhLCB5IHBvZHLDoSBwb25lcmxhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBlc3RhIHkgZW4gcG9zdGVyaW9yZXMgdmVyc2lvbmVzLCBhIHRyYXbDqXMgZGUgbG9zIG1lZGlvcyBxdWUgZXN0aW1lIG9wb3J0dW5vcy48L3A+Cgo8cD5FbCBBdXRvciBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhbiBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3RybyB5IGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhIG9icmEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MsIG5pIGVzIGRpc2NyaW1pbmF0b3Jpby4gPGI+QU5JSTwvYj4gZXN0YXLDoSBleGVudGEgZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+Cgo8cD5MYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS48L3A+Cgo8cD5FbCBBdXRvciwgY29tbyBnYXJhbnRlIGRlIGxhIGF1dG9yw61hIGRlIGxhIG9icmEgeSBlbiByZWxhY2nDs24gYSBsYSBtaXNtYSwgZGVjbGFyYSBxdWUgPGI+QU5JSTwvYj4gc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMYSA8Yj5BTklJPC9iPiBlc3RhcsOhIGV4ZW50YSBkZSBlamVyY2l0YXIgYWNjaW9uZXMgbGVnYWxlcyBlbiBub21icmUgZGVsIEF1dG9yIGVuIGVsIHN1cHVlc3RvIGRlIGluZnJhY2Npb25lcyBhIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZXJpdmFkb3MgZGVsIGRlcMOzc2l0byB5IGFyY2hpdm8gZGUgbGEgb2JyYS48L3A+Cgo8cD48Yj5BTklJPC9iPiBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4KCjxwPkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyA8Yj5BTklJPC9iPiBwb2Ryw6EgcmV0aXJhciBvIGludmlzaWJpbGl6YXIgbGEgb2JyYSBkZSBSRURJLCBwcmV2aWEgbm90aWZpY2FjacOzbiBhbCBBdXRvciwgZW4gc3VwdWVzdG9zIHN1ZmljaWVudGVtZW50ZSBqdXN0aWZpY2Fkb3MsIG8gZW4gY2FzbyBkZSByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLjwvcD4KGobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212023-06-13T16:48:30REDI - Agencia Nacional de Investigación e Innovaciónfalse |
spellingShingle | The Gross-Saccoman Conjecture is True Romero, Pablo Graph Theory Uniformly optimally reliable graph Gross-Saccoman conjecture Network Reliability Optimization Multigraphs Ciencias Naturales y Exactas Matemáticas Matemática Aplicada |
status_str | submittedVersion |
title | The Gross-Saccoman Conjecture is True |
title_full | The Gross-Saccoman Conjecture is True |
title_fullStr | The Gross-Saccoman Conjecture is True |
title_full_unstemmed | The Gross-Saccoman Conjecture is True |
title_short | The Gross-Saccoman Conjecture is True |
title_sort | The Gross-Saccoman Conjecture is True |
topic | Graph Theory Uniformly optimally reliable graph Gross-Saccoman conjecture Network Reliability Optimization Multigraphs Ciencias Naturales y Exactas Matemáticas Matemática Aplicada |
url | https://hdl.handle.net/20.500.12381/700 |